首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 The present model study explores the chemistry of methionine complexes and ternary methionine-guanine adducts formed by trans-[PtCl2(NH3)2] (1) and antitumor trans-[PtCl2(NH3)quinoline] (2) using 1D (1H, 195Pt) and 2D NMR spectroscopy. Compound 2 was substitution inert in reactions with N-acetyl-lmethionine [AcMet(H)]. Reactions of trans-[PtCl(NO3)(NH3)quinoline] (5) ("monoactivated" 2) with AcMetH in water and acetone at various stoichiometries point to Pt(II)-S binding that requires prior activation of the Pt-Cl bond by labile oxygen donors. Trans-[PtCl{AcMet(H)-S}(NH3)quinoline](NO3) (6) and trans-[Pt{AcMet(H)-S}2(NH3)quinoline](NO3)2 (7) were isolated from these mixtures. At high [Cl], AcMet(H) is displaced from 7, giving 6. Frozen stereodynamics in 6 at the thioether-S and slow rotation about the Pt-Nquinoline bond result in four spectroscopically distinguishable diastereomers. 1H NMR spectra of 7 show faster exchange dynamics due to mutual trans-labilization of the sulfur donors. Substitution of chloride in trans-[PtCl(9-EtGua)(NH3)L]NO3 (L=NH3, 3; L=quinoline, 4; 9-EtGua=9-ethylguanine, which mimics the first DNA binding step of 1 and 2) by methionine-sulfur proceeded ca. 2.5 times slower for the quinoline compound. Both reactions, in turn, proved to be ca. 4 times faster than binding of a second nucleobase under analogous conditions. From the resulting mixtures the ternary adducts trans-[Pt(AcMet-S)(9-EtGua-N7)(NH3)L](NO3, Cl) (L=NH3, 8; L=quinoline, 9) were isolated. A species analogous to 9 formed in a rapid reaction between 6 and 5′-guanosine monophosphate (5′-GMP). From NMR data an AMBER-based solution structure of the resulting adduct, trans-[Pt(AcMet-S)(5′-GMP-N7)(NH3)quinoline] (10), was derived. The unusual reactivity along the N7-Pt-S axis in 8–10 resulted in partial release of both 9-EtGua and AcMet at high [Cl]. Possible consequences of the kinetic and structural effects (e.g., trans effect of sulfur, steric demand of quinoline) observed in these systems with respect to the (trans)formation of potential biological cross-links are discussed. Received: 25 May 1998 / Accepted: 6 August 1998  相似文献   

2.
The effects of major DNA intrastrand cross-links of antitumor dinuclear PtII complexes [{trans-PtCl(NH3)2}2-μ-{trans-(H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (1) and [{PtCl(DACH)}2-μ-{H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG 2980) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.  相似文献   

3.
【目的】以标志链带藻(Desmodesmus insignis)为实验材料,研究不同氮源及其浓度对该藻生长、总脂和淀粉(碳水化合物)含量的影响,为该藻在生物能源方面的应用提供一定的理论依据。【方法】以硝酸钠、碳酸氢铵或尿素为氮源,5个氮浓度(3、6、9、12和18 mmol/L)的BG-11培养基培养标志链带藻,采用干重法测定生物质浓度、重量法测定总脂、苯酚-硫酸法测定、总碳水化合物和淀粉的含量。【结果】标志链带藻在3种氮源下均能很好的生长。最高油脂含量出现在3 mmol/L硝酸钠实验组,达到32.61%(d.w)。当18 mmol/L碳酸氢铵作为氮源时,总碳水化合物与淀粉的含量以及产率都达到最高,分别为56.54%(d.w)和55.33%(d.w)、0.24和0.23 g/(L·d)。以尿素为氮源时,其生物质浓度和各组分含量与其它氮源实验组差别不大,均有利于该藻的生长及各生化组分含量的积累。【结论】以该藻种生产生物能源的成本等综合考虑,以18 mmol/L碳酸氢铵和尿素为氮源培养标志链带藻最优。  相似文献   

4.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

5.
Summary The absorption of N from foliar applications of various N sources by pine seedlings was studied under greenhouse conditions. Needles dipped into solutions of 4,000 ppm N from Ca(NO3)2 were burned slightly at the tips at two weeks. Although higher concentrations of (NH2)2CO and (NH4)2SO4 could be used without plant damage, a uniform concentration of 3,000 ppm was used in all comparative tests of sources. The level of tissue N, brought about by soil fertilization 6 weeks previously, did not significantly influence absorption of foliarly applied N15. Soil moisture maintained at near 100, 60 to 70, and 25 to 35 per cent of water-holding capacity of the Leon fs did not significantly affect the absorption of tagged N. Greater quantities of N15 were absorbed as urea than as Ca(NO3)2 or (NH4)2SO4. The use of a spreader-sticker increased the N15 uptake, regardless of the N compound used. However, the magnitude of the increased absorption associated with use as a sticker varied from 490 per cent with (NH4)2SO4 to 260 per cent with urea. It was calculated that approximately 71, 45, and 39 per cent of foliar applied N was absorbed into needles within 24 hours from urea, Ca(NO3)2, and (NH4)2SO4, respectively. Journal Paper No3588 of the Florida Agricultural Experiment Station, Gainesville, Florida.  相似文献   

6.
trans -[PtCl4(NH3)(thiazole)] (1), trans-[PtCl4(cha)(NH3)] (2), cis-[PtCl4(cha)(NH3)] (3) (cha =cyclohexylamine), and cis-[PtCl4(NH3)2] (4) has been investigatedat 25 °C in a 1.0 M aqueous medium at pH 2.0–5.0 (1) and 4.5–6.8 (24) using stopped-flow spectrophotometry. The redox reactions follow the second-order rate law , where k is a pH-dependent rate constant and [GSH]tot the total concentration of glutathione. The reduction takes place via parallel reactions between the platinum(IV) complexes and the various protolytic species of glutathione. The pH dependence of the redox kinetics is ascribed to displacement of these protolytic equilibria. The thiolate species GS is the major reductant under the reaction conditions used. The second-order rate constants for reduction of compounds 14 by GS are (1.43±0.01)×107, (3.86±0.03)×106, (1.83±0.01)×106, and (1.18±0.01)×106 M−1 s−1, respectively. Rate constants for reduction of 1 by the protonated species GSH are more than five orders of magnitude smaller. The mechanism for the reductive elimination reactions of the Pt(IV) compounds is proposed to involve an attack by glutathione on one of the mutually trans coordinated chloride ligands, leading to two-electron transfer via a chloride-bridged activated complex. The kinetics results together with literature data indicate that platinum(IV) complexes with a trans Cl-Pt-Cl axis are reduced rapidly by glutathione as well as by ascorbate. In agreement with this observation, cytotoxicity profiles for such complexes are very similar to those for the corresponding platinum(II) product complexes. The rapid reduction within 1 s of the platinum(IV) compounds with a trans Cl-Pt-Cl axis to their platinum(II) analogs does not seem to support the strategy of using kinetic inertness as a parameter to increase anticancer activity, at least for this class of compounds. Received: 8 December 1999 / Accepted: 15 February 2000  相似文献   

7.
Summary Germination experiments were carried out with varying but equivalent amounts of NH4Cl, (NH4)2SO4, and NH4NO3, while in one experiment urea was included. It could be stated that the inhibitory effect on germination was ionic in nature, the effect of urea being rather small, while it was safer to use NH4Cl or (NH4)2SO4 than NH4NO3, especially under dry conditions.  相似文献   

8.
The effect of NO3 ?:NH4 + ratio (14:1, 9:6, 7.5:7.5, 1:14, total 15 mmol/L N) in the nutrient solution on biomass, root morphology, and C and N metabolism parameter in hydroponically grown oilseed rape (Brassica napus L.) was evaluated. The dry weights of leaves and roots were significantly largest at the equal NO3 ?:NH4 + ratio (7.5:7.5) compared with those of high NO3 ?:NH4 + ratio (14:1) or low NO3 ?:NH4 + ratio (1:14). Additionally, low NO3 ?:NH4 + ratio (1:14) reduced total root length and root surface area compared with the equal NO3 ?:NH4 + ratio (7.5:7.5), while high NO3 ?:NH4 + ratio (14:1) did not show any significant effect on root morphology except average diameter. The maximum of chlorophyll a, chlorophyll b and carotenoid were obtained under 7.5:7.5 treatment, whereas the maximum of the leaf net photosynthetic (P n), stomatal conductance (G s) and transpiration rate (T r) were increased with increase in NH4 + concentration in the nutrient solution. The activity of nitrate reductase (NR) showed a significant difference at different NO3 ?:NH4 + ratios and ranged 9:6 > 7.5:7.5 > 14:1 > 1:14, whereas the range of soluble sugar and soluble protein was 7.5:7.5 > 1:14 > 9:6 > 14:1. Our study reveals that oilseed rape growth is greater under 7.5:7.5 treatment than that under three other treatments. Oilseed rape growth at high or low NO3 ?:NH4 + ratios was inhibited by decreased pigments, NR activity, soluble sugar, and soluble protein, whereas subdued root growth should be apprehended considerate under high NH4 + condition.  相似文献   

9.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

10.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

11.
The synthesis of a novel series of 4-arylhydrazono-5-methyl-1,2-dihydropyrazol-3-ones 4a–h, and their N 2-alkyl and acyclo, glucopyranosyl, and ribofuranosyl derivatives is described. K2CO3 catalyzed alkylation of 4a–h with allyl bromide, propargyl bromide, 4-bromobutyl acetate, 2-acetoxyethoxymethyl bromide, and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide proceeded selectively at the N 2-position of the pyrazolinone ring. Glycosylation of 4a with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose under Vorbruggen glycosylation conditions gave the corresponding N 2-4-arylhydrazonopyrazolone ribofuranoside 9a in good yield. Conventional deprotection of the acetyl protected nucleosides furnished the corresponding 4-arylhydrazonopyrazolone nucleosides in good yields. Selected numbers of the newly synthesized compounds were screened for antimicrobial activity. Compounds 4b, 12a, and 14d showed moderate activities against Aspergillus flavus, Penicillium sp., and Escherichia coli.  相似文献   

12.
Land-based bivalve aquaculture depends on large-scale cultures of live microalgae for food. The intensity of large-scale microalgal production is important for cost-effectiveness. Using Walne’s medium as the control, simplified media containing nitrogen, phosphorus, silica, iron, manganese and vitamins were designed to determine the impact of nitrogen source and molar N:P ratio (sodium nitrate, NO3 9:1, ammonium chloride, NH4 9:1 and NH4 25:1) on growth, dry-weight biomass, culture longevity and lipid content of Chaetoceros muelleri, a diatom commonly used in shellfish aquaculture. During the exponential phase (day 6), dry-weight production in simplified media was similar to controls, indicating that this microalga can grow successfully on simplified media and use ammonium as the nitrogen source. The cultures grown on nitrate or ammonium differed in their time-course. Low nitrogen concentration in cultures grown with nitrate caused the collapse of these cultures within 11–13 days, after a short stationary phase. Cultures grown with ammonium had a longer stationary phase and were still alive on day 20, in spite of the low nitrogen concentrations observed after day 13 in cultures grown with NH4 9:1. During stationary phase (day 18) there was an increase in lipid content of algae under conditions of low nitrogen availability (NH4 9:1) and extended low phosphorus availability (NH4 25:1). Considering dry weight production, culture longevity, nutrient efficiency and lipid composition, simplified media containing ammonium, phosphorus, silica, iron, manganese and vitamins are a viable and profitable choice for batch culture of C. muelleri. In the exponential phase, the simplified medium NH4 9:1 was as effective as the control. Overall, both of the simplified media using ammonium are effective and suitable, depending on the purpose of the cultures and whether lipid contents (NH4 9:1), dry weight biomass (NH4 25:1) or nitrogen input and output (NH4 9:1) are desired.  相似文献   

13.
Abstract

The interaction of adenosine-5′-monophosphate (5′-AMP), guanosine-5′-monophosphate (5′-GMP) and 2′-deoxyguanosine-5′-monophosphate (5′-dGMP) with the [Co(NH3)6]3+, [CO(NH3)5C1]2+ and [CO(NH3)4C12]+ cations has been investigated in aqueous solution with metal/nucleotide ratios (r) of 1/2, 1 and 2 at neutral pH. The solid complexes have been isolated and characterized by FT-IR and 1H-NMR spectroscopy.

The complexes are polymeric in nature both in the crystalline solid and aqueous solution. The binding of the cobalt-hexammine cation is indirectly (via NH3) through the N-7 and the PO3 2- groups of the AMP and via O-6, N-7 and the PO3 2- of the GMP and dGMP anions (outer-sphere). The cobalt-pentammine and cobalt-tetrammine bindings are through the phosphate groups (inner-sphere) and the N-7 site (outer-sphere) of these nucleotide anions. The ribose moiety shows C2′-endo/anti conformation, in the free AMP and GMP anions as well as in the cobalt-ammine - AMP complexes, whereas a mixture of the C2′-endo/anti and C3′-endo/anti sugar puckers were observed for the Co(NH3)6-GMP, Co(NH3)5-GMP and a C3′-endo/anti conformer for the Co(NH3)4-GMP complexes. The deoxyribose showed an O4′-endo/anti conformation for the free dGMP anion and a C3′-endo/anti for the Co(NH3)6-dGMP, Co(NH3)5-dGMP and Co(NH3)4-dGMP complexes.  相似文献   

14.
We investigated the ability of Enteromorpha intestinalis (L.) Link to take up pulses of different species of nitrogen simultaneously, as this would be an important mechanism to enhance bloom ability in estuaries. Uptake rates and preference for NH4+ or NO3 following 1, 3, 6, 9, 12 or 24 h of exposure to either 15NH4NO3 or NH415NO3 were determined by disappearance of N from the medium. Differences in assimilation rates for NH4+ or NO3 were quantified by the accumulation of NH4+, NO3, and atom % 15N in the algal tissue. NH4+ concentration was reduced more quickly than water NO3 concentration. Water column NH4+ concentration after the longest time interval was reduced from 300 to 50 μM. Water NO3 was reduced from 300 to 150 μM. The presence of 15N or 14N had no effect on uptake of either NH4+ or NO3. 15N was removed from the water at an almost identical rate and magnitude as 14N. Differences in accumulation of 15NH4+ and 15NO3 in the tissue reflected disappearance from the water; 15N from NH4+ accumulated faster and reached an atom % twice that of 15N from NO3. This outcome suggested that when NH4+ and NO3 were supplied in equal concentrations, more NH4+ was taken up and assimilated. The ability to take up high concentrations of NH4+, and NO3 simultaneously is important for bloom-forming species of estuarine macroalgae subject to multiple nutrient species from various sources.  相似文献   

15.
Summary Activity of valine dehydrogenases (VDH) from Streptomyces aureofaciens and S. fradiae is strongly induced by L-valine even in the presence of 25mM NH4 +. When added into 16 h-old cultures growing with 100mM NH4 +, L-valine induced the synthesis of VDH. The results indicate that Streptomyces can utilize L-valine in the presence of NH4 +, and the induction of VDH activity by L-valine is not repressed by NH4 +.  相似文献   

16.
Synthesis of “reversed” methylenecyclopropane analogues of nucleoside phosphonates 6a,7a, 6b, and 7b is described. 1-Bromo-1-bromomethylcyclopropane 8 was converted to the bromocyclopropyl phosphonate 9 by Michaelis-Arbuzov reaction with triisopropyl phosphite. Base-catalyzed β-elimination and deacetylation gave the key Z- and E-hydroxymethylcyclopropyl phosphonates 10 and 11 separated by chromatography. The Mitsunobu type of alkylation of 10 or 11 with adenine or 2-amino-6-chloropurine afforded phosphonates 12a, 12b, 13a, and 13b. Acid hydrolysis furnished the adenine and guanine analogues 6a, 7a, 6b, and 7b. The E and Z configuration was assigned on the basis of NOE experiments with phosphonates 6b and 7b. All Z- and E-isomers were also distinguished by different chemical shifts of CH2O or CH2N (H4 or H4′). Significant differences of the chemical shifts of the cyclopropane C3(3’) carbons and coupling constants 3JP,C2(2’) or 3JP,C3(3’) selective for the Z- or E-isomers were also noted. Phosphonates 6a, 7a, 6b, and 7b are devoid of significant antiviral activity.  相似文献   

17.
Abstract

The composition of the products of reaction of 1-(2,3-anhydro-5-O-benzoyl-β-D-lyxofuranosyl)uracil (1) with NH4N3 was studied by a reverse-phase HPLC system which was found to separate the 3-azido-arabino 2 and 2-azido-xylo 3 isomers that were formed. The use of a 10:1 ratio of NH 4 N 3 to 1 in refluxing EtOH was found to minimize ring opening at C-2 (7%). The higher stereoselectivity of ring opening produced by using a large excess of NH 4 N 3 was suppressed by conducting the reaction in DMF. Preventing the escape of the NH 3 by-product only resulted in debenzoylation. The isolation of pure, crystalline 3 was achieved by reverse-phase preparative HPLC. Separation from the arabino isomer was also effected by debenzoylation and selective acetonide formation with the xylo isomer, which allowed facile isolation of the latter by normal phase chromatography. Hydrolysis of the acetonide 7 provided unprotected 2-azido-xylo nucleoside 6, which was also obtained by NaOMe treatment of 3. The mechanistic basis for the stereoselectivity of epoxide opening is discussed.  相似文献   

18.
When grown in vitro in a medium containing NH4NO3 as the sole source of nitrogen, seeds ro the orchid, Cattleya (C. labiata ‘Wonder’ X C. labiata ‘Treasure'), germinated readily and proceeded to form small plantlets. Development of the embryos was accompanied by an increase in their total nitrogen and a decline in the percent dry weight. Growth responses of the seedlings in other ammonium salts like (NH4)2SO4, (NH4)2HPO4, NH4Cl, ammonium acetate and ammonium oxalate were similar to that in NH4NO3. However, when grown in a medium containing NaNO3, development of the seedlings was drastically inhibited; KNO3, Ca(NO3)2, KNO2 and NaNO2 also were poor nitrogen sources. Attempts to grow the seedlings in NaNO3 by changing the pH or by addition of kinetin, molybdenum or ascorbic acid as supplements were completely unsuccessful. When seedlings growing in NH4NO3 for varying periods were transferred to NaNO3, it was found that those plants allowed to grow for 60 or more days in NH4NO3 could resume normal growth thereafter in NaNO3. Determination of the nitrate reductase activity in seedlings of different ages grown in NaNO3, after NH4NO3, showed that the ability of the seedlings to assimilate inorganic nitrogen was paralleled by the appearance of the enzyme.  相似文献   

19.
Abstract

The octahedral complex tetraammine(chloroaquo)cobalt(III) dichloride is shown to be the HCl hydrolysis product of both P1,2-bidentate tetraammine(pyrophosphato)cobalt(III) [CO(NH3)4HP207 or CoPP] and bidentate tetraammine(phosphato)cobalt(III) [Co(NH3)4P04or CoP]. The complex crystallizes in the orthorhombic space group Pna21 with cell dimensions α=13.033(2)Å, b=6.710(1) Å, and c=10.318(2)Å; the crystal structure was refined to a final disagreement index of 0.033. The average of the four Co-N distances is 1.944±6Å. The Co-Cl distance is 2.257(2)Å and the Co-O(W) distance is 1.971(4)Å. Both protons of the coordinated water molecule are engaged in strong hydrogen bonds to the two nonbonded chloride counterions with 0(W)-C1 distances of 3.087(6)Å and 3.123(6)Å. Each nonbonded chloride is engaged in seven hydrogen bonding interactions resulting from the high ratio of hydrogen bond donors to acceptors in the CoP structure. Cobalt bisphosphate (CoP2) is the final enzyme hydrolysis product when CoPP is used as substrate in the yeast inorganic pyrophosphatase reaction. The bridge oxygen atom is the site of initial CoPP cleavage both, for HCl catalyzed hydrolysis as well as for enzyme catalyzed hydrolysis.  相似文献   

20.
Root growth as a function of ammonium and nitrate in the root zone   总被引:7,自引:1,他引:6  
We examined the effect of soil NH4+ and NO3? content upon the root systems of field-grown tomatoes, and the influence of constant, low concentrations of NH4+ or NO3? upon root growth in solution culture. In two field experiments, few roots were present in soil zones with low extractable NH4+ or NO3?; they increased to a maximum in zones having 2μg-N NO3? g?1 soil and 6 μg-N NO3= g?1 soil, but decreased in zones having higher NH4+ or NO3? levels. Root branching was relatively insensitive to available mineral nitrogen. Plants maintained in solution culture at constant levels of NH4+ or NO3?, had similar shoot biomass, but all root parameters – biomass, length, branching and area – were greater under NH4 nutrition than under NO3?. These results suggest that the size of root system depends on a functional equilibrium between roots and shoots (Brouwer 1967) and on the balance between soil NH4+ and NO3?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号