首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The ring opening of the O-2,3′-anhydrothymidine 5 with the anion of methyl mercaptan gave the 3′-methylthio derivaative 6. Subsequent oxidation and deprotection afforded 3′-(methyl-sulfinyl)-3′-deoxythymidine 2 and its sulfone analogue 3.  相似文献   

2.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

3.
Two 3-(7′-theophyllyl)glycals, (IV) and (V), were synthesized by fusion of theophylline and the appropriate glycals in the presence of p-toluenesulfonic acid. The structure and stereochemistry of the glycals were determined mainly from NMR analysis of their dihydro and 1,6-anhydro derivatives.  相似文献   

4.
Abstract

Reaction of 1-[2,5(and 3,5)-di-O-trityl-β-D-erythro-pentofuran-3 (and 2)-ulosyl]uracil derivatives 5 and 6 with (chloromethyl)triphenylphosphorane resulted in the stereoselective formation of (E)-3′- and (Z)-2′-chloromethylene derivatives 7 (69%) and 8 (53%), respectively, deprotection of which gave 9 and 10. Transformation of the uracil nucleoside 7 into cytosine one followed by deprotection yielded 12. The latter was converted into the arabinoside 14. The fully deprotected chloromethylene nucleosides were tested for their activity against HIV-1 and HIV-2.  相似文献   

5.
Abstract

A convenient general method of synthesis of 5′-O-(alkoxycarbonyl)phosphonate esters of 2′,3′-dideoxyribonucleosides is presented, using the 5′-O-(methoxycarbonyl)phosphinyl, 5′-0-(ethoxycarbonyl)phosphinyl, and 5′-O-(cholesterylcarbonyl)phosphinyl derivatives of 3′-azido-3′-deoxythymidine (AZT) and the 5′-0-(ethoxycarbonyl)phosphinyl derivative of 2′,3′-dideoxycytidine (ddC) as examples. Reaction of trimethyl phosphonoformate, methyl phosphonoformate, or dimethyl cholesterylcarbonylphosphonate with phosphorus pentachloride in carbon tetrachloride, followed by direct condensation of the resulting phosphonyl chloride with the nucleoside, gave the fully esterified phosphonoformate derivatives, which on treatment with sodium iodide in tetrahydrofuran underwent selective cleavage of the P-OMe or P-OEt groups, leaving the carboxylate esters intact. The resulting products were converted from sodium salts to ammonium salts by ion-exchange chromatography.  相似文献   

6.
A pyrophosphate-linked polynucleotide analog based on thymidine 3,5 bis-phosphate (pTp) catalyzes the oligomerization of activated dimers of pdAp in the presence of MgCl2. Although no catalysis of the oligomerization of the activated monomer (ImpdAplm) was observed in the presence of MgCl2, there was a significant stimulation of oligomerization by the template in the presence of MnCl2.  相似文献   

7.
Abstract

Resistant variants were selected in vitro against two novel nucleoside analogues, (+) dOTC and (-) dOTFC using the HIV-1 molecular clone HXB2D. The variants obtained displayed 6.5-fold and 10-fold resistance to these compounds, respectively. Cloning and sequencing of the RT genes of the selected viruses identified two mutations, M184I for (+) dOTC and M184V for (-) dOTFC. Results with mutated recombinant clones of HXB2D confirmed the importance of these mutations in MT-4 cells. The resistance profiles of clinical samples with wild-type or 3TC-resistant phenotypes were also studied; low to moderate levels of cross-resistance were observed against the novel compounds.  相似文献   

8.
Abstract

2,2′ -Anhydro-1- (3′ -deoxy-3′ -iodo-5′ -O-trityl-B-D-arabinofuranosyl)-thymine (2) was synthesized from 2′,3′ -didehydro-3′-deoxythymidine (DHT) (1). Compound 2 was readily converted into 2′,3′-anhydro-lyxofuranosyl derivatives 4-6. Reaction of 4a with some nucleophiles (N3 -, OMe-, Cl-) gave the corresponding 3′-substituted arabinonucleosides (7b,d,f) together with the minor xylosyl isomers (8a,c). Compounds 7b,d,f and 8a were deprotected to 7c,e,g and 8b, respectively.  相似文献   

9.
Abstract

Comparison of the solution (in CDCl3 at 500 MHz1H NMR) and X-ray crystal studies of 3′-oximinouridine 1 shows in general good agreement with the high anti glycosidic angle and in the conformation about C4′-C5′. The sugar pucker (C2′-endo) is qualititatively identical in both cases. This is the first example of a conformationally sugar-rigid nucleoside in which the rigidity arises from the sp2 character of an endocyclic carbon (i.e. C3′), not from the strain due to the ring fusion (see ref. 7 for conformationally strained nucleosides).  相似文献   

10.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

11.
Abstract

(E)-3′,5′-diamino-5-(2-bromovinyl)-2′,3′,5′-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. In contrast with BVDU, compound 5 did not show activity against herpes simplex virus or varicella-zoster virus.  相似文献   

12.
Synthetic 2′-hydroxy-3,4′,6′-trimethoxy-4-benzyloxychalcone (I) affords (±)-7,3′-di-O-methyleriodictyol (II) and 7,3′-di-O-methylluteolin (or velutin, VII) identical with natural samples. Similarly synthetic 2′-hydroxy-4,4′,6′-trimethoxy-3-benzyloxychalcone (X) gives natural (±)-7,4′-di-O-methyleriodictyol (XI) and 7,4′-di-O-methylluteolin (or pilloin, IX). However, attempts to partially etherify II with one mole of prenyl bromide to obtain the natural prenyl ether failed; only the corresponding diprenyloxychalcone (IV) was obtained.  相似文献   

13.
An efficient protocol has been developed for the synthesis of a small library of 3′-deoxy-3′-(4-substituted-triazol-1-yl)-5-methyluridine using Cu(I)-catalyzed Huisgen–Sharpless–Meldal 1,3-dipolar cycloaddition reaction of 3′-azido-3′-deoxy-5-methyluridine with different alkynes under optimized condition in an overall yields of 76%–92%. Here, the azido precursor compound, i.e., 3′-azido-3′-deoxy-5-methyluridine was chemoenzymatically synthesized from D-xylose in good yield. Some of the alkynes used in cycloaddition reaction were synthesized by the reaction of hydroxycoumarins or naphthols with propargyl bromide in acetone using K2CO3in excellent yields. All synthesized compounds were unambiguously identified on the basis of their spectral (IR, 1H-, 13C NMR spectra, and high-resolution mass spectra) data analysis.  相似文献   

14.
Abstract

Self complementary diribonucleoside monophosphates containing 2-aminoadenosine (n2A) and uridine (U) residues, (2′-5′) n2ApU (1), (3′-5′) n2ApU (2), (2′-5′) Upn2A (3) and (3′-5′) Upn2A (4), were synthesized by condensation of suitably protected nucleoside and nucleotide units using dicyclohexylcarbodiimide (DCC). The dimers, (3) and (41, were also obtained from uridine 2′,3′-cyclic phosphate and unprotected 2-aminoadenosine using 2,4,6-triisopropylbenzenesulfonyl chloride (TPS-Cl) as the condensing agent. The conformational properties of these dimers were examined by UV, CD and NMR spectroscopy. The results reveal that the 2′-5′ isomers take a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′ isomers. The n2ApU isomers have more stacked structure than the Upn2A isomers.  相似文献   

15.
It was found that DCMU had a differential effect at two concentration ranges on variable fluorescence kinetics in isolated chloroplasts. The increase in fluorescence rate at low concentrations of DCMU was abolished by preincubation of chloroplasts with ferricyanide or formate, treatments which were shown to convert Fe in the PS II reaction center (i.e., the FeQA complex) into a non-oxidizable form, but it was not affected by Tris treatment. Increase in fluorescence kinetics (at the initial linear rate) at high concentrations of DCMU was found to be abolished by Tris treatment but it was only marginally affected by ferricyanide or formate treatments. The effect of Tris could be abolished by addition of hydroquinone-ascorbate, which restored electron flow to the pool of secondary acceptors.Contrary to the effect of DCMU, no such differential concentration dependence of the variable fluorescence kinetics was found for atrazine.The increase in fluorescence kinetics (at the initial linear rate) at a low concentration rate of DCMU is presumably restricted to units which contain an oxidizable Fe in the FeQA complex. Increase in fluorescence kinetics (at the initial linear rate) at high DCMU concentration is probably related to the effect of DCMU at the QB site.Abbreviations DCMU 3-(34 dichlorophenyl)-1,1 dimethyl urea - PS II Photosystem II - Tris tris (hydroxymethyl) aminomethane  相似文献   

16.
Abstract

A direct alkylation of trimethylsilylated pyrimidines and azapyrimidines with 1-azido-3-benzyloxy-2-chloromethoxypropane gave acyclic analogues of AZT in a good overall yield. None of the compounds exhibited significant antiviral activity against human immunodeficiency virus and herpes simplex virus.  相似文献   

17.
In a continuing investigation into the pharmacophores and structure–activity relationship (SAR) of (3′R,4′R)-3′,4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) as a potent anti-HIV agent, 2′-monomethyl substituted 1′-oxa, 1′-thia, 1′-sulfoxide, and 1′-sulfone analogs were synthesized and evaluated for inhibition of HIV-1 replication in H9 lymphocytes. Among them, 2′S-monomethyl-4-methyl DCK (5a)3 and 2′S-monomethyl-1′-thia-4-methyl DCK (7a) exhibited potent anti-HIV activity with EC50 values of 40.2 and 39.1 nM and remarkable therapeutic indexes of 705 and 1000, respectively, which were better than those of the lead compound DCK in the same assay. In contrast, the corresponding isomeric 2′R-monomethyl-4-methyl DCK (6) and 2′R-monomethyl-1′-thia-4-methyl DCK (8) showed much weaker inhibitory activity against HIV-1 replication. Therefore, the bioassay results suggest that the spatial orientation of the 2′-methyl group in DCK analogs can have important effects on anti-HIV activity of this compound class.  相似文献   

18.
A series of novel 2,5-bis(3′-indolyl)furans and 3,5-bis(3′-indolyl)isoxazoles were synthesized as antitumor agents. The antiproliferative activity was evaluated in vitro toward diverse human tumor cell lines. Initially 5 isoxazoles and 3 furan derivatives were tested against a panel of 10 human tumor cell lines and the most active derivatives 3c and 4a were selected to be evaluated in an extended panel of 29 cell lines. By exhibiting mean IC50 values of 17.4 μg/mL (3a) and 20.5 μg/mL (4c), in particular 4c showed a high level of tumor selectivity toward the 29 cell lines.  相似文献   

19.
Abstract

2′-5′ and 3′-5′ linked 2-aminoadenylyl-2-aminoadenosines [(2′-5′)n2Apn2A (1) and (3′-5′)n2Apn2A (2)] were synthesized by condensation of 5′-O-monomethoxytrityl-N 2 N 6-dibenzoyl-2-aminoadenosine and N 2,N 6,2′,3′-O-tetrabenzoyl-2-aminoadenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). The conformational properties of these dimers 1 and 2 were examined by UV, NMR and CD spectroscopy. The results reveal that the 2′-5′-isomer 1 takes a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′-isomer 2. Interactions of 1 and 2 with polyuridylic acid (Poly (U)) were also examined by Tm, mixing curves, UV and CD spectra. Both the dinucleoside isomers 1 and 2 formed a complex of 1 : 2 stoichiometry with poly(U), which was much more stable than that of the corresponding ApA isomer  相似文献   

20.
Abstract

The two-step method for the preparation of adenosine cyclic 3′,5′-phosphoramidate diastereoisomers, which involves the activation of adenosine cyclic 3′,5′-monophosphate (1) with an acid chloride and in situ aminolysis of the anhydride intermediate (Bentrude, W.G.; Tomsaz, J. Synthesis 1984, 27; Bottka, S.; Tomasz, J. Tetrahedron Lett. 1985, 24, 2909), has been improved. The best yields were attained when 1 was reacted with 4.4 molar equivalents of phosphorus oxychloride in trimethyl phosphate at O°C for 3 h, and the solution of phosphorus oxychloride in trimethyl phosphate was pretreated with 0.5 molar equivalent of water at room temperature for 20 min. R p and S p diastereoisomers of adenosine cyclic 3′,5′-N-methyphosphoramidate and N,N-dimethylphosphoramidate have been synthesized under these experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号