首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract

Self complementary diribonucleoside monophosphates containing 2-aminoadenosine (n2A) and uridine (U) residues, (2′-5′) n2ApU (1), (3′-5′) n2ApU (2), (2′-5′) Upn2A (3) and (3′-5′) Upn2A (4), were synthesized by condensation of suitably protected nucleoside and nucleotide units using dicyclohexylcarbodiimide (DCC). The dimers, (3) and (41, were also obtained from uridine 2′,3′-cyclic phosphate and unprotected 2-aminoadenosine using 2,4,6-triisopropylbenzenesulfonyl chloride (TPS-Cl) as the condensing agent. The conformational properties of these dimers were examined by UV, CD and NMR spectroscopy. The results reveal that the 2′-5′ isomers take a stacked conformation, which contains a larger base-base overlap and is more stable against thermal perturbation with respect to the 3′-5′ isomers. The n2ApU isomers have more stacked structure than the Upn2A isomers.  相似文献   

2.
Abstract

The molecular conformations of 3′- and 5′-azido and amino derivatives of 5-methoxymethyl-2′-deoxyuridine, 1, were investigated by nmr. The glycosidic conformation of 5-methoxymethyl-5′-amino-2′,5′-dideoxy-uridine, 5 had a considerable population of the syn form. The 5′-derivatives show a preference for the S conformation of the furanose ring as in 1. In contrast, the 3′-derivatives show preference for the N conformation. For 5-methoxymethyl-3′-amino-2′,3′-dideoxyuridine, 3, the shift towards the N state is pH dependent. The preferred conformation for the exocyclic (C4′,C5′) side chain is g+ for all compounds except 5 which has a strong preference for the t rotamer (79%). Compounds 1, 3 and 5 inhibited growth of HSV-1 by 50% at 2, 18 and 70 μg/ml respectively, whereas 2 and 4 were not active up to 256 μg/ml (highest concentration tested). The compounds were not cytotoxic up to 3,000 μM.  相似文献   

3.
In order to evaluate further the structural requirements previously proposed for accumulation of polychlorinated biphenyls (PCB) and their sulphur-containing metabolites in the respiratory tract of mice, 4-methylthio-, 4-methylsulphonyl and 4,4′-bis(methylthio)-2,2′,5,5′-[14C]tetrachlorobiphenyl were studied by whole body autoradiography. All the compounds gave rise to a strong accumulation of radioactivity in the mucosa of the bronchi, trachea and larynx. The first two substances were also concentrated in the mucosa of the nasal cavities. At the longer post-injection times all the compounds studied were localized in distinct sites of the kidney cortex. However, while the uptake of the monosubstituted sulphur-containing tetrachlorobiphenyl metabolites there was comparatively weak, the bis(methylthio) derivative showed a remarkable accumulation and retention in the kidney cortex. The study makes it possible to formulate the structural requirements for bronchial accumulation on the basis of the structure of the compounds that are accumulated rather than on the structure of the unmetabolized polychlorobiphenyls. Also with regard to the uptake in the kidney cortex a specific structure-dependency seems to exist.  相似文献   

4.
Abstract

The 5′-O-(4,4′-dimethoxytrityl) and 5′-O-(tert-butyldimethylsilyl) derivatives of 2′-,3′-O-thiocarbonyl-6-azauridine and 2′,3′-O-thiocarbonyl-5-chlorouridine were synthesized from the parent nucleosides by reaction with 4, 4′-dimethoxytrityl chloride and tert-butyldimethylsilyl chloride, respectively, followed by treatment with 1,1′-thiocarbonyldiimidazole. Introduction of a 2′-,3′-double bond into the sugar ring by reaction of the 5′-protected 2′-,3′-O-thionocarbonates with 1, 3-dimethyl-2-phenyl-1, 3, 2-diazaphospholidiine was unsuccessful, but could be accomplished satisfactorily with trimethyl phosphite. Reactions were generally more successful with the 5′-silylated than with the 5′-tritylated nucleosides. Formation of 2′-,3′-O-thiocarbonyl derivatives proceeded in higher yield with 5′-protected 6-azauridines than with the corresponding 5-chlorouridines because of the propensity of the latter to form 2,2′-anhydro derivatives. In the reaction of 5′-O-(tert-butyldimethylsilyl)-2′-,3′-O-thiocarbonyl-6-azauridine with trimethyl phosphite, introduction of the double bond was accompanied by N3-methylation. However this side reaction was not a problem with 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-O-thioarbonyl-5-chlorouridine. Treatment of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-6-azauridine with tetrabutylammonium fluoride followed by hydrogenation afforded 2′-,3′-dideoxy-6-azauridine. Deprotection of 5′-O-(tert-butyldimethylsilyl)-2′-, 3′-didehydro-2′-,3′-dideoxy-5-chlorouridine yielded 2′-,3′-didehydro-2′-,3′-dide-oxy-5-chlorouridine.  相似文献   

5.
We describe concise and efficient synthesis of biologically very important 3′-O-tetraphosphates namely 2′-deoxyadenosine-3′-O-tetraphosphate (2′-d-3′-A4P) and 2′-deoxycytidine-3′-O-tetra-phosphate (2′-d-3′-C4P). N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine was converted into N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine-3′-O-tetraphosphate in 87% yield using a one-pot synthetic methodology. One-step concurrent deprotection of N6-benzoyl and 5′-O-levulinoyl groups using concentrated aqueous ammonia resulted 2′-d-3′-A4P in 74% yield. The same synthetic strategy was successfully employed to convert N4-benzoyl-5′-O-levulinoyl-2′-deoxycytidine into 2′-d-3′-C4P in 68% yield.  相似文献   

6.
A pyrophosphate-linked polynucleotide analog based on thymidine 3,5 bis-phosphate (pTp) catalyzes the oligomerization of activated dimers of pdAp in the presence of MgCl2. Although no catalysis of the oligomerization of the activated monomer (ImpdAplm) was observed in the presence of MgCl2, there was a significant stimulation of oligomerization by the template in the presence of MnCl2.  相似文献   

7.
ALTHOUGH adenosine cyclic monophosphate (cyclic AMP) has been proposed as a mediator through which many hormones exert their physiological effects1, it is also well established that calcium plays a crucial role in hormone release2. Both calcium3,4 and cyclic AMP1,5 have been implicated in the action of adrenocorticotropin (ACTH) on the adrenal cortex and although various hypotheses have been advanced concerning their roles in steroid production and release, elucidation of their functions in the adrenal gland is hindered because most studies have been carried out on in vitro systems where the physiological release response cannot be studied. The isolated cat adrenal gland perfused in situ 6 approximates the situation in vivo, yet eliminates the influence of several factors, including the anterior pituitary. In the intact adrenal preparation one can also measure both steroid synthesis and release and can better evaluate the respective effects of cyclic AMP and calcium on these processes.  相似文献   

8.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

9.
Abstract

Beginning with the treatment of the diacetate of cis-3,5-cyclopentenediol (5) with Pseudomonas cepacia lipase, (-)-5′-noraristeromycin (1) and (-)-7-deaza 5′-noraristeromycin (3) have been prepared. Subjecting 5 to treatment with porcine liver esterase led to an efficient preparation of a substituted cyclopentane precursor which, following literature precedence, can be converted into (-)-5′-homoaristeromycin (4).  相似文献   

10.
Abstract

A direct and efficient synthesis of 5′-deoxy-2′,3′-O-isopropylideneinosine, 7, from readily available inosine is described. An example of a potentially general synthesis of N -substituted-5′-deoxyadenosines from 7 is also described.  相似文献   

11.
Abstract

Recently our laboratory introduced1 chemistries to synthesize 2′- and 3′- cholesteroluridine conjugates which were incorporated into several antisense oligonucleotides. We have now extended this chemistry to other nucleosides (adenosine and cytosine) and synthesized antisense oligonucleotide conjugates for several disease targets. Synthesis of these cholesterol nucleosides was carried out hy condensing choleskrol chloroformate with 2′-O-alkylamine or 3′-O-alkylamine of the appropriate nucleoside. The 2′-O-alkylamines were deiived from direct alkylation procedure.  相似文献   

12.
Abstract

The vitamin biotin plays a significant role in biological assays based on its unusually high affinity [KD=10?15M] to streptavidin and avidin. This assay can be used for monitoring cellular trafficking of antisense oligonucleotides using hiotin conjugation. In addition to the above diagnostic application, biotin conjugation to macromolecules could be used as a vitamin-mediated delivery system for macromolecules into cells. Complexation of avidin to hiotin-oligonucleotides (phosphodiesters or PNA) have been used to enhance the uptake of oligonucleotides1. Appropiiate placement of biotin in oligonucleotides could also provide increased nuclease resistance.  相似文献   

13.
Abstract

The ring opening of the O-2,3′-anhydrothymidine 5 with the anion of methyl mercaptan gave the 3′-methylthio derivaative 6. Subsequent oxidation and deprotection afforded 3′-(methyl-sulfinyl)-3′-deoxythymidine 2 and its sulfone analogue 3.  相似文献   

14.
Abstract

Proton NMR line broadening methods were used to determine the rates of amino proton exchange for disordered 2′ - and 5′ - GMP dianions in aqueous solutions containing tetramethylammonium (TMA+) cations. Replacing TMA+ with Na+ does not substantially alter the exchange rates, provided that H-bonded, Na+-directed tetramer structures are absent. Activation enthalpies (kcal/mol) and entropies (eu) for 2′ - GMP are: ΔH# = 18.5 ± 1.3, ΔS# = 9.6 ± 4.2 for theTMA+ salt atpH 8.10, and ΔH# = 14.7 ± 2.6, ΔS# = -3.7 ± 8.0 for the Na+ salt at pH 8.11. Extrapolated values of pseudo first-order rate constants at 25° Care in the range of k = 1–10 sec?1. At suitable concentrations and temperatures, the Na+ salts of both 2′ - and 5′ - GMP formed stacked and unstacked tetramer units. Relative to the exchange kinetics observed for the disordered nucleotide, the exchange process in the tetramer units was catalyzed in half the amino protons and inhibited in the other half. The catalytic process (k < 103 sec?3) has been attributed to amino protons not involved in interbase H-bonding, where as the inhibited process (k > 10?1 sec?1) was assigned to those protons which do form such bonds. The structure-catalyzed process in both the stacked and unstacked tetramers was manifested by a loss of NMR amino proton intensity due to weighted time-averaging with the resonance for bulk water. A bridging water molecule between an amino proton and a phosphate on an adjacent nucleotide in the tetramer unit may provide a mechanistic pathway for the structure-catalyzed process.  相似文献   

15.
This article describes the synthesis of (3 ′S) and (3 ′R)-3 ′-amino-3 ′-deoxy pyranonucleosides and their precursors (3 ′S) and (3 ′R)-3 ′-azido-3 ′-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 ′-amino-3 ′-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 ′-amino-3 ′-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.  相似文献   

16.
Abstract

The deuterations of 2′-deoxyguanosine in the 4′ and 5′ positions have been described elsewhere (1). The starting material is the 5′-aldehyde formed by mild oxidation with N,N-dicyclohexyl carbodiimide in dimethyl sulphoxide of the fully protected nucleoside with free 5′-alcoholic function. The 5′4euteration was achieved by reduction with deuterated sodium borohydride. Incorporation of deuterium in the 4′-position was achieved v i a an enhanced keto-enol tautomerim by heating the aldehyde in 50/50 D20/pyridine, with subsequent reduction of the aldehyde with NaBH4. The 6-furanoid form was isolated from the I-lyxo by-product by reverse phase HPLC. Applied to pyrimidine 2′-deoxyribonucleosides, this method was shown to give deuterated 2′-deoxycytidine and thymidine in good yield.  相似文献   

17.
Reported is an efficient synthesis of adenyl and uridyl 5′-tetrachlorophthalimido-5′-deoxyribonucleosides, and guanylyl 5′-azido-5′-deoxyribonucleosides, which are useful in solid-phase synthesis of phosphoramidate and ribonucleic guanidine oligonucleotides. Replacement of 5′-hydroxyl with tetrachlorophthalimido group was performed via Mitsunobu reaction for adenosine and uridine. An alternative method was applied for guanosine which replaced the 5′-hydroxyl with an azido group. The resulting compounds were converted to 5′-amino-5′-deoxyribonucleosides for oligonucleotide synthesis. Synthetic intermediates were tested as antimicrobials against six bacterial strains. All analogs containing the 2′,3′-O-isopropylidine protecting group demonstrated antibacterial activity against Neisseria meningitidis, and among those analogs with 5′-tetrachlorophthalimido and 5′-azido demonstrated increased antibacterial effect.  相似文献   

18.
Abstract

A novel synthesis of the nucleoside analog, 5′-deoxy-5′-(cyclopropylmethylthio)adenosine (CPMTA, 1) has been developed. CPMTA is a closely related structural analog of 5′-deoxy-5′-(isobutylthio)-adenosine (SIBA, 2), which has been widely studied and shown to exert a multitude of biological effects. The in vitro and in vivo antitumor (L1210 leukemia) activity of CPMTA has been found to be comparable to that of SIBA, whereas its in vitro antiviral (HSV and VSV) activity is diminished. These agents are being developed as inhibitors of methylation and/or polyamine synthesis.  相似文献   

19.
Abstract

The 2′-β-fluoro analogue of 2′,3′-dideoxyguanosine has been prepared by two synthetic routes. This compound and two analogues have anti-HIV activity in at least two of three host cell systems used (ATH8, CEM, PBL). These compounds, as well as their ddGuo parents, have been characterized with regard to their acid-stabilities, octanol-water partition coefficients, and enzyme substrate properties for adenosine deaminase and purine nucleoside phosphorylase. F-ddGuo analogues are less potent but more stable than their non-fluorinated parent compounds.  相似文献   

20.
Abstract

2′-Azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine were evaluated for their inhibitory activity against ribonucleotide reductase and for subsequent cell growth inhibition. Their mono-and di-phosphates were synthesized and their inhibitory activities against the reductase were also determined in a permeabilized cell system, along with the two nucleosides. The results of the present study identify the first phosphorylation step involved in the conversion of the two azidonucleosides to the corresponding diphosphates to be rate-limiting in the overall activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号