首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
W. Traut 《Genetics》1994,136(3):1097-1104
The fly Megaselia scalaris Loew possesses three homomorphic chromosome pairs; 2 is the sex chromosome pair in two wild-type laboratory stocks of different geographic origin (designated ``original' sex chromosome pair in this paper). The primary male-determining function moves at a very low rate to other chromosomes, thereby creating new Y chromosomes. Random amplified polymorphic DNA markers obtained by polymerase chain reaction with single decamer primers and a few available phenotypic markers were used in testcrosses to localize the sex-determining loci and to define the new sex chromosomes. Four cases are presented in which the primary male-determining function had been transferred from the original Y chromosome to a new locus either on one of the autosomes or on the original X chromosome, presumably by transposition. In these cases, the sex-determining function had moved to a different locus without an obvious cotransfer of other Y chromosome markers. Thus, with Megaselia we are afforded an experimental system to study the otherwise hypothetical primary stages of sex chromosome evolution. An initial molecular differentiation is apparent even in the new sex chromosomes. Molecular differences between the original X and Y chromosomes illustrate a slightly more advanced stage of sex chromosome evolution.  相似文献   

2.
The phorid fly Megaselia scalaris is a laboratory model for the turnover and early differentiation of sex chromosomes. Isolates from the field have an XY sex-determining mechanism with chromosome pair 2 acting as X and Y chromosomes. The sex chromosomes are homomorphic but display early signs of sex chromosome differentiation: a low level of molecular differences between X and Y. The male-determining function (M), maps to the distal part of the Y chromosome’s short arm. In laboratory cultures, new Y chromosomes with no signs of a molecular differentiation arise at a low rate, probably by transposition of M to these chromosomes. Downstream of the primary signal, the homologue of the Drosophila doublesex (dsx) is part of the sex-determining pathway while Sex-lethal (Sxl), though structurally conserved, is not.  相似文献   

3.
Among different teleost fish species, diverse sex-determining mechanisms exist, including environmental and genetic sex determination, yet chromosomal sex determination with male heterogamety (XY) prevails. Different pairs of autosomes have evolved as sex chromosomes among species in the same genus without evidence for a master sex-determining locus being identical. Models for evolution of Y chromosomes predict that male-advantageous genes become linked to a sex-determining locus and suppressed recombination ensures their co-inheritance. In the guppy, Poecilia reticulata, a set of genes responsible for adult male ornaments are linked to the sex-determining locus on the incipient Y chromosome. We have identified >60 sex-linked molecular markers to generate a detailed map for the sex linkage group of the guppy and compared it with the syntenic autosome 12 of medaka. We mapped the sex-determining locus to the distal end of the sex chromosome. We report a sex-biased distribution of recombination events in female and male meiosis on sex chromosomes. In one mapping cross, we observed sex ratio and male phenotype deviations and propose an atypical mode of genetic sex inheritance as its basis.  相似文献   

4.
Comparative genomic hybridization (CGH) was used to identify and probe sex chromosomes in several XY and WZ systems. Chromosomes were hybridized simultaneously with FluorX-labelled DNA of females and Cy3-labelled DNA of males in the presence of an excess of Cot-1 DNA or unlabelled DNA of the homogametic sex. CGH visualized the molecular differentiation of the X and Y in the house mouse, Mus musculus, and in Drosophila melanogaster: while autosomes were stained equally by both probes, the X and Y chromosomes were stained preferentially by the female-derived or the male-derived probe, respectively. There was no differential staining of the X and Y chromosomes in the fly Megaselia scalaris, indicating an early stage of sex chromosome differentiation in this species. In the human and the house mouse, labelled DNA of males in the presence of unlabelled DNA of females was sufficient to highlight Y chromosomes in mitosis and interphase. In WZ sex chromosome systems, the silkworm Bombyx mori, the flour moth Ephestia kuehniella, and the wax moth Galleria mellonella, the W chromosomes were identified by CGH in mitosis and meiosis. They were conspicuously stained by both female- and male-derived probes, unlike the Z chromosomes, which were preferentially stained by the male-derived probe in E. kuehniella only but were otherwise inconspicuous. The ratio of female:male staining and the pattern of staining along the W chromosomes was species specific. CGH shows that W chromosomes in these species are molecularly well differentiated from the Z chromosomes. The conspicuous binding of the male-derived probe to the W chromosomes is presumably due to an accumulation of common interspersed repetitive sequences. Received: 6 January 1999; in revised form: 28 January 1999 / Accepted: 11 February 1999  相似文献   

5.
Variability of genetic sex determination in poeciliid fishes   总被引:13,自引:4,他引:9  
Volff JN  Schartl M 《Genetica》2001,111(1-3):101-110
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids.  相似文献   

6.
Gynogenetically produced XX and YY Nile tilapia (Oreochromis niloticus) and diploid control groups were screened for amplified fragment length polymorphisms (AFLPs) to search for sex-linked or sex-specific markers. Family-level bulked segregant analysis (XX and YY gynogenetic family pools) and individual screening (XX and YY gynogenetics and XX and XY control individuals) identified 3 Y-linked (OniY425, OniY382, OniY227) and one X-linked (OniX420) AFLP markers. OniX420 and OniY425 were shown to be allelic. Single locus polymerase chain reaction assays were developed for these markers. Tight linkage was demonstrated between the AFLP markers and the sex locus within the source families. However, these markers failed to consistently identify sex in unrelated individuals, indicating recombination between the markers and the sex-determining loci. O. niloticus bacterial artificial chromosome clones, containing the AFLP markers, hybridized to the long arm of chromosome 1. This confirmed previous evidence, based on meiotic chromosome pairing and fluorescence in situ hybridization probes obtained through chromosome microdissection, that chromosome pair 1 is the sex chromosomes.  相似文献   

7.
The Evolution of the Y Chromosome with X-Y Recombination   总被引:1,自引:0,他引:1       下载免费PDF全文
A. G. Clark 《Genetics》1988,119(3):711-720
A theoretical population genetic model is developed to explore the consequences of X-Y recombination in the evolution of sex chromosome polymorphism. The model incorporates one sex-determining locus and one locus subject to natural selection. Both loci have two alleles, and the rate of classical meiotic recombination between the loci is r. The alleles at the sex-determining locus specify whether the chromosome is X or Y, and the alleles at the selected locus are arbitrarily labeled A and a. Natural selection is modeled as a process of differential viabilities. The system can be expressed in terms of three recurrence equations, one for the frequency of A on the X-bearing gametes produced by females, one for each of the frequency of A on the X- and Y-bearing gametes produced by males. Several special cases are examined, including X chromosome dominance and symmetric selection. Unusual equilibria are found with the two sexes having very different allele frequencies at the selected locus. A significant finding is that the allowance of recombination results in a much greater opportunity for polymorphism of the Y chromosome. Tighter linkage results in a greater likelihood for equilibria with a large difference between the sex chromosomes in allele frequency.  相似文献   

8.
A small-insert library was constructed after microdissection of the short arm of the Y chromosome of lake charr, Salvelinus namaycush. Clones from this library were sequenced and two dinucleotide CA-repeat microsatellite sequences were recovered. Oligonucleotide primers for one locus were designed and optimized for amplification by PCR. This locus (designated Yp136) was tested for sex linkage in twelve lake charr families and found to be a distance of 37 centimorgans (cM) from the sex-determining locus. This microsatellite locus was also examined in three informative, gynogenetic/diploid, lake charr crosses for linkage to the centromere on the X chromosome. Results from these families show that this locus is 19cM from the centromere. The combination of linkage data and microdissection information places the sex-determining locus near the telomere of the Y chromosome in lake charr. This is consistent with studies of several other fish species including some salmonids that place the sex locus near the telomere.  相似文献   

9.
The differentiation of sex chromosomes is thought to be interrupted by relatively frequent sex chromosome turnover and/or occasional recombination between sex chromosomes (fountain-of-youth model) in some vertebrate groups as fishes, amphibians, and lizards. As a result, we observe the prevalence of homomorphic sex chromosomes in these groups. Here, we provide evidence for the loss of sex chromosome heteromorphism in the Amazonian frogs of the genus Engystomops, which harbors an intriguing history of sex chromosome evolution. In this species complex composed of two named species, two confirmed unnamed species, and up to three unconfirmed species, highly divergent karyotypes are present, and heteromorphic X and Y chromosomes were previously found in two species. We describe the karyotype of a lineage estimated to be the sister of all remaining Amazonian Engystomops (named Engystomops sp.) and perform chromosome painting techniques using one probe for the Y chromosome and one probe for the non-centromeric heterochromatic bands of the X chromosome of E. freibergi to compare three Engystomops karyotypes. The Y probe detected the Y chromosomes of E. freibergi and E. petersi and one homolog of chromosome pair 11 of Engystomops sp., suggesting their common evolutionary origin. The X probe showed no interspecific hybridization, revealing that X chromosome heterochromatin is strongly divergent among the studied species. In the light of the phylogenetic relationships, our data suggest that sex chromosome heteromorphism may have occurred early in the evolution of the Amazonian Engystomops and have been lost in two unnamed but confirmed candidate species.Subject terms: Cytogenetics, Evolutionary genetics  相似文献   

10.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

11.
Iturra P  Lam N  de la Fuente M  Vergara N  Medrano JF 《Genetica》2001,111(1-3):125-131
With the aim of characterizing the sex chromosomes of rainbow trout (Oncorhynchus mykiss) and to identify the sex chromosomes of coho salmon (O. kisutch), we used molecular markers OmyP9, 5S rDNA, and a growth hormone gene fragment (GH2), as FISH probes. Metaphase chromosomes were obtained from lymphocyte cultures from farm specimens of rainbow trout and coho salmon. Rainbow trout sex marker OmyP9 hybridizes on the sex chromosomes of rainbow trout, while in coho salmon, fluorescent signals were localized in the medial region of the long arm of one subtelocentric chromosome pair. This hybridization pattern together with the hybridization of a GH2 intron probe on a chromosome pair having the same morphology, suggests that a subtelocentric pair could be the sex chromosomes in this species. We confirm that in rainbow trout, one of the two loci for 5S rDNA genes is on the X chromosome. In males of this species that lack a heteromorphic sex pair (XX males), the 5S rDNA probe hybridized to both subtelocentrics This finding is discussed in relation to the hypothesis of intraspecific polymorphism of sex chromosomes in rainbow trout.  相似文献   

12.
13.
Summary Using 32P-labeled probe consisting mainly of (GATA)n we have shown that a male specific Alu1 DNA blot pattern which defines the Y chromosome sex-determining locus in inbred mice is highly polymorphic in wild mice, indicating substantial sequence evolution in this region under field conditions. In all cases examined by in situ hybridization, the region concerned is paracentromeric. In contrast, the blot pattern of another probe (M 34) which detects repeated sequences specific to the mouse Y chromosome but outside the sex-determining locus, remains constant between different isolates.Deceased  相似文献   

14.
Fluorescence in situ hybridization (FISH) was used to identify the X and Y chromosomes of offspring produced by normal and "apparent" XY-female fall-run Chinook salmon (Oncorhynchus tshawytscha) from California. FISH experiments were performed using probes to 2 sex-linked loci, growth hormone pseudogene (GH-Psi), and OtY1, as well as a probe to a sex-linked microsatellite (Omy7INRA). Comparison of FISH staining patterns between the offspring produced by normal and apparent XY-females revealed that the apparent XY-female examined transmitted a "Y-like" chromosome with an attenuated OtY1 and GH-Psi signal to half of its offspring. Segregation analysis of microsatellites derived from rainbow trout (Oncorhynchus mykiss) with respect to phenotypic sex was carried out for 2 normal and 2 apparent XY-female Chinook salmon families. Inheritance patterns of Omy7INRA were consistent with this locus being closely linked to GH-Psi in males and in apparent XY-females carrying the Y-like chromosome. Another microsatellite locus (Omm1077) was closely linked to the primary sex-determining locus (SEX) in males but not to GH-Psi/OtY1 in apparent XY-females. The FISH analyses suggest that apparent XY-female fall-run Chinook salmon in California are not the product of a Y chromosome to autosome translocation. Despite the combined FISH and inheritance analyses, we were unable to differentiate between 2 alternative explanations for apparent XY-females, namely, recombination of markers between the sex chromosomes, or a Y chromosome with a dysfunctional or missing sex-determining region.  相似文献   

15.
Randomly cloned DNA fragments and a poly-(GATA) containing sequence were used as probes to identify sex chromosomal inheritance and to detect differences at the molecular level between the homomorphic X and Y in the phorid fly,Megaselia scalaris. Restriction fragment length differences between males and females and between two laboratory stocks of different geographic origin were used to differentiate between sex chromosomal and autosomal origin of the respective fragments. Five random probes detected X and Y chromosomal DNA loci and two others recognized autosomal DNA loci. One random probe and the poly(GATA) probe hybridized with both sex chromosomal and autosomal restriction fragments. Most of the Y chromosomal restriction fragments were conserved in length between the two stocks while most of the X chromosomal and autosomal fragments showed length polymorphism. It was concluded, therefore, that the Y chromosome contains a conserved segment in which crossover is suppressed and restriction site differences have accumulated relative to the X. These chromosomes, therefore, conform to a theoretically expected early stage of sex chromosome evolution.  相似文献   

16.
Despite the major importance of sex determination in aquaculture, no master sex-determining gene has been identified so far in teleost fish. In the platyfish Xiphophorus maculatus, this master gene is flanked by two receptor tyrosine kinase genes, the Xmrk oncogene responsible for melanoma formation in some Xiphophorus interspecific hybrids, and its proto-oncogenic counterpart. Both Xmrk genes, which have already been characterised at the molecular level, delimit a region of about 1 Mb that contains other gene loci involved in sexual maturity, pigmentation and melanoma formation. We have constructed a genomic bacterial artificial chromosome (BAC) library of X. maculatus with a tenfold coverage of the haploid genome and walked on both X and Y sex chromosomes starting from both Xmrk genes. This led to the assembly of BAC contigs from the sex-determining region covering approximately 950 kb of the X and 750 kb of the Y chromosome. To our knowledge, these are the largest contigs reported so far for sex chromosomes in fish. Molecular analysis suggests that the sex-determining region of X. maculatus frequently undergoes retrotranspositions and other kinds of rearrangements. This genomic plasticity might be related to the high genetic variability observed in Xiphophorus for sex determination, sexual maturity, pigmentation and melanoma formation, which are encoded by gene loci located in the sex-determining region.  相似文献   

17.
18.
Cross-species chromosome painting was used to investigate genome rearrangements between tammar wallaby Macropus eugenii (2n = 16) and the swamp wallaby Wallabia bicolor (2n = 10♀/11♂), which diverged about 6 million years ago. The swamp wallaby has an XX female:XY1Y2 male sex chromosome system thought to have resulted from a fusion between an autosome and the small original X, not involving the Y. Thus, the small Y1 should represent the original Y and the large Y2 the original autosome. DNA paints were prepared from flow-sorted and microdissected chromosomes from the tammar wallaby. Painting swamp wallaby spreads with each tammar chromosome-specific probe gave extremely strong and clear signals in single-, two-, and three-color FISH. These showed that two tammar wallaby autosomes are represented unchanged in the swamp wallaby, two are represented by different centric fusions, and one by a tandem fusion to make the very long arms of swamp wallaby Chromosome (Chr) 1. The large swamp wallaby X comprises the tammar X as its short arm, and a tandemly fused 7 and 2 as the long arm. The acrocentric swamp wallaby Y2 is a 2/7 fusion, homologous with the long arm of the X. The small swamp wallaby Y1 is confirmed as the original Y by its painting with the tammar Y. However, the presence of sequences shared between the microdissected tammar Xp and Y on the swamp wallaby Y2 implies that the formation of the compound sex chromosomes involved addition of autosome(s) to both the original X and Y. We propose that this involved fusion with an ancient pseudoautosomal region followed by fission proximal to this shared region. Received: 16 October 1996/Accepted: 30 January 1997  相似文献   

19.
Sex chromosome pairing during male meiosis in marsupials   总被引:9,自引:0,他引:9  
Peter Sharp 《Chromosoma》1982,86(1):27-47
The pairing of the sex chromosomes at pachytene has been examined in twenty-two species of Australian marsupials, including four with complex sex chromosome systems. The axial elements of the sex chromosomes associate in all but one species. However, no synaptonemal complex has been observed between the axes of the X and Y chromosome in any of the examined species. Both the type of association between the sex chromosome axes, and the structural modifications of these axes are conserved within taxonomic groupings. In three species with complex sex chromosome systems, the t(XA), Y, A trivalents do not have a favoured relative orientation of the axes of the Y and A chromosomes, whereas in a fourth species with a t(XA1), t(A2YA2), A2 system the t(XA1) and A2 axes are in a cis arrangement with each other.  相似文献   

20.
Sex‐determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex‐chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex‐determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X‐linked and Y‐linked Dmrt1 haplotypes. Some males had fixed male‐specific alleles at all markers (“differentiated” Y chromosomes), others only at Dmrt1 (“proto‐” Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex‐determining locus. From our results, the polymorphism in sex‐chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号