首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex‐determination cascade. We propose to define sex‐determination systems at the population‐ (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative‐genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex‐ determination mechanisms, by inducing large‐scale sex reversal and thereby sex‐ratio selection for alternative sex‐determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold‐blooded vertebrates might thus directly relate to the temperature dependence in sex‐determination mechanisms.  相似文献   

2.
Several hypotheses have been elaborated to account for the evolutionary decay commonly observed in full-fledged Y chromosomes. Enhanced drift, background selection and selective sweeps, which are expected to result from reduced recombination, may all share responsibilities in the initial decay of proto-Y chromosomes, but little empirical information has been gathered so far. Here we take advantage of three markers that amplify on both of the morphologically undifferentiated sex chromosomes of the European tree frog (Hyla arborea) to show that recombination is suppressed in males (the heterogametic sex) but not in females. Accordingly, genetic variability is reduced on the Y, but in a way that can be accounted for by merely the number of chromosome copies per breeding pair, without the need to invoke background selection or selective sweeps.  相似文献   

3.
    
Patterns of sex‐chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern‐boreal population of Ammarnäs displayed well‐differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y‐specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female‐biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co‐option of small genomic regions that harbor key genes from the sex‐determination pathway.  相似文献   

4.
    
The pejerrey possesses a genotypic sex determination system driven by the amhy gene and yet shows marked temperature‐dependent sex determination. Sex‐reversed XY females have been found in a naturally breeding population established in Lake Kasumigaura, Japan. These females could mate with normal XY males and generate YY “supermale” individuals that, if viable and fertile, would sire only genotypic male offspring. This study was conducted to verify the viability, gender, and fertility of YY pejerrey and to develop a molecular method for their identification. Production of YY fish was attempted by crossing a thermally sex‐reversed XY female and an XY male, and rearing the progeny until sexual maturation. To identify the presumable YY individuals, we first conducted a PCR analysis using amhy‐specific primers to screen only amhy‐positive (XY and YY) fish. This screening showed that 60.6% of the progeny was amhy‐positive, which suggested the presence of YY fish. We then conducted a second screening by qPCR in order to identify the individuals with two amhy copies in their genome. This screening revealed 13 individuals, all males, with values twice higher than the other 30 amhy‐positive fishes, suggesting they have a YY complement. This assumption as well as the viability, fertility, and “supermale” nature of these individuals was confirmed in progeny tests with XX females that yielded 100% amhy‐positive offspring. These results demonstrate that qPCR can obviate progeny test as a means to identify the genotypic sex and therefore may be useful for the survey of all three possible genotypes in wild populations.  相似文献   

5.
In sharp contrast to birds and mammals, most cold‐blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X‐Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex‐determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex‐linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F1 offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex‐specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite‐containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex‐determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group.  相似文献   

6.
    
Evolutionary transitions between sex‐determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature‐dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature‐dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex‐determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed‐mechanism system that has not been revealed by previous approaches. This study solves two long‐standing puzzles of the evolution of sex‐determining mechanisms by illuminating the evolutionary pathways and endpoints.  相似文献   

7.
Cichlid species of the genus Oreochromis vary in their genetic sex-determination systems. In this study, we used microsatellite DNA markers to characterize the sex-determination system in Oreochromis tanganicae. Markers on linkage group 3 were associated with phenotypic sex, with an inheritance pattern typical of a female heterogametic species (WZ-ZZ). Further, locus duplication was observed for two separate microsatellite markers on the sex chromosome. These results further advance our understanding of the rapidly evolving sex-determination systems among these closely related tilapia species.  相似文献   

8.
早期胚胎的发育选择:性别决定   总被引:2,自引:0,他引:2  
程汉华  周荣家 《遗传》2007,29(2):145-149
性别决定是一个复杂的发育调控过程, 早期胚胎发育过程中, 雌雄二者必居其一的发育选择是胚胎性腺形成必须的发育决定。文章综述了动物性别决定的遗传系统、性腺发生、性别决定关键基因及其作用机制, 从分子进化的角度分析了性染色体与性别决定形成机制, 提示性别决定基因在进化中总是趋向异配性染色体。  相似文献   

9.
    
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex‐determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large‐scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female‐biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex‐determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild‐caught male and female adults, except in one high‐altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex‐chromosome differentiation in amphibians.  相似文献   

10.
Squamates may be an attractive group in which to study the influence of sex chromosomes on speciation rates because of the repeated evolution of heterogamety (both XY and ZW), as well as an apparently large number of taxa with environmental sex-determination.  相似文献   

11.
    
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold‐blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex‐determining systems and occasional XY recombination. Using individual‐based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the “fountain‐of‐youth” model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via “demasculinization” of the Y, allowing recombination in XY (sex‐reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the “fountain of youth” as a plausible mechanism to account for the maintenance of sex‐chromosome homomorphy.  相似文献   

12.
    
The material was analyzed on the main problems of genetics of mammalian spermatogenesis, sex determination, its reversion and other defects from the standpoint of current cytological and molecular-genetic concepts of functional activity of the parental genomes after fertilization and behavior of their chromosomes at the early embryonic stages. On the basis of this analysis, a hypothesis has been proposed, which explains a high percentage (50% or more) of early embryonic mortality in placental mammals under the conditions of natural and extracorporeal fertilization, as well as regular appearance of defects in the course of natural sex determination, including the appearance of representatives of both sex minorities. We do not make pretense to comprehensive and deep analysis of male gametogenesis and sex determination in mammals.  相似文献   

13.
An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards (Bassiana duperreyi, Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX-XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles.  相似文献   

14.
Sexual conflict has been proposed as a potential selective agent in the evolution of a variety of traits. Here, we present a simple model that investigates the initial conditions under which sex-linked and sex-limited harming alleles can invade a population. In this paper, we expand previous threshold models to study how sex-linkage and sex determination mechanisms affect the spreading conditions of a harming allele. Our models provide new insights into how sexual conflict could originate, showing that in diploid organisms the probability of a new harming allele spreading is independent of both the genetic sex determination system and the dominance relationships. However, the incidence of interlocus sexual conflicts in the initial steps of the invasion critically depends on the inheritance system.  相似文献   

15.
《Current biology : CB》2021,31(21):4800-4809.e9
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

16.
  总被引:1,自引:0,他引:1  
Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.  相似文献   

17.
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.  相似文献   

18.
    
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex‐linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex‐reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress‐induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North‐Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female‐to‐male sex‐reversed adults had similar body mass as normal males. We recorded no events of male‐to‐female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human‐induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex‐reversed individuals surviving to adulthood may participate in breeding.  相似文献   

19.
    
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.  相似文献   

20.
    
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex‐determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex‐determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号