首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微小RNA(microRNAs,miRNA)是一类22个核苷酸左右的非编码调控RNA。可以通过切割mRNA或者是抑制翻译两种机制,在转录后水平发挥调控生物生长发育的重要作用。目前的研究已经发现microRNA参与调控发育、细胞分化、细胞凋亡等多种生理过程。目前已证实miRNA参与肿瘤发生和进展,miRNA表达谱是肿瘤诊断和预后的指标,miRNA突变、缺失或表达水平的异常与人类肿瘤密切相关,它发挥类似于癌基因或抑癌基因的作用,参与肿瘤细胞的增殖、分化和细胞凋亡过程。本文就miRNA在肿瘤发生发展以及诊断治疗方面的研究进展作一综述。  相似文献   

2.
环状RNA(circular RNA,circRNA)是一类闭合环状的内源RNA分子,广泛存在于不同物种及多种人体细胞中,具有丰富性、稳定性和组织特异性等特点。人体细胞中的circRNA主要可分为外显子circRNA、环状内含子RNA和外显子-内含子circRNA等。与正常组织相比,circRNA在多种肿瘤组织中异常表达,并具有作为微小RNA(microRNA,miRNA)海绵调控miRNA、结合蛋白质、参与翻译等功能。虽然circRNA在肿瘤中异常表达的具体机制尚不明确,但其在食管鳞状细胞癌、胃癌、结直肠癌、肝细胞癌、神经胶质瘤等多种肿瘤发生、发展的分子通路中具有重要作用,并有望成为全新的肿瘤标志物和治疗靶点。circRNA领域的发展日新月异,本文根据最新研究报道,就circRNA的基本特征、异常表达机制、调控肿瘤的机制及其在多种肿瘤中发挥的作用作一综述。  相似文献   

3.
cAMP反应元件结合蛋白(cAMP responsive element binding protein, CREB)是亮氨酸拉链家族转录因子。新近研究发现,其在肿瘤组织中的表达显著高于癌旁,被认为是体内的原癌基因之一。非编码RNA(non-coding RNA, ncRNA)是生物体内不能翻译成蛋白质的RNA,主要包括微小RNA(microRNA, miRNA)和长链非编码RNA(long non-coding RNA, lncRNA)等,其异常表达与肿瘤的发生发展密切相关,是目前肿瘤研究的热点。研究表明,CREB与ncRNA之间存在互动效应,并且二者之间的相互作用影响肿瘤的发生发展,然而miRNA和lncRNA的作用机制却不相同。肿瘤细胞内高表达的CREB在影响下游靶基因表达时能够正调控miRNA,而对lncRNA则有促进和抑制两方面的作用。反之,肿瘤细胞中一些低表达的miRNA能促进CREB的表达;有趣的是,高表达的lncRNA能够促进CREB的表达和诱导其活性增强。在影响下游靶基因表达时miRNA仅仅发挥抑制作用,而lncRNA则分别具有促进和抑制作用。本文结合我们的系列报道和最新的研究结果,对ncRNA与CREB的互动效应及其与肿瘤的发生发展之间的关系作一综述。  相似文献   

4.
miRNA功能的研究进展   总被引:2,自引:0,他引:2  
综述了miRNA功能的最新研究进展。miRNA是一类长度约20~24nt的非编码调控单链小分子RNA,其功能和作用是近年来分子生物学界关注的重点。这些微小的RNA控制着包括细胞增殖、凋亡、器官发生、发育、造血以及肿瘤发生等若干途径。最近研究发现,miRNA可能同时具有肿瘤抑制因子和源癌基因的功能,并且可能在癌症的诊断和治疗中发挥重要的作用。miRNA可以通过影响或者调控细胞增殖、分化过程中的信使RNA和关键蛋白质等参与细胞的发育。此外,miRNA对多种植物激素的调控作用对于植物体的发育也具有重要意义。  相似文献   

5.
肿瘤干细胞是具有自我更新能力并能发展成为不同分化程度的肿瘤的一类细胞,它的存在是肿瘤转移和复发的重要原因。最新研究表明,肿瘤干细胞可通过肿瘤细胞的上皮–间充质化(epithelial-mesenchymal transition,EMT)产生。作为研究细胞调控的热点—非编码RNA,通过调控EMT可能会促使肿瘤细胞获得肿瘤干细胞特征。该文主要综述了近年来非编码RNA调控肿瘤细胞EMT以及干性获得的研究进展,以有助于理解肿瘤中非编码RNA的调控机制和功能。  相似文献   

6.
环状RNA(circRNA)广泛存在于各种生物细胞中,具有结构稳定、丰度高和组织特异性表达等特征。最近的研究表明,一些circRNA作为竞争性内源NRNA(ceRNA)来发挥基因表达调控的作用。circRNA利用其microRNA(miRNA)应答元件结合miRNA,以阻断miRNA对其靶标表达的抑制作用,从而调控其他相关RNA的表达水平。circRNA在基因表达调控中重要作用的发现不仅丰富了人们对ceRNAiN控网络的认识,而且提示circRNA在药物开发和疾病诊治中具有良好的应用前景。  相似文献   

7.
皮肤创伤愈合过程是一个复杂而连续的过程,这一过程需要多种细胞、多种因子的参与,涉及细胞增殖、细胞分化、细胞运动、细胞黏附等多个细胞生物学过程。 MicroRNA( miRNA)是一类高度保守的非编码RNA,它通过靶向结合信使RNA( mRNA)并使其降解或抑制其翻译,实现转录后基因表达调控。 miRNA作为基因表达的重要调控分子,几乎参与了机体所有的生理和病理过程。除了在皮肤发育中发挥重要的作用,还参与多种皮肤病、皮肤癌和皮肤创伤愈合过程的调节。主要总结了miRNA调控皮肤创伤愈合的研究进展。  相似文献   

8.
CircRNA(circular RNA)是一种具有特殊环形结构的ncRNA(non-coding RNA),并具有多种生物学功能。随着研究的深入,发现circRNA能够通过海绵吸附抑制miRNA(micro RNA)的表达,进而调控各系统肿瘤的发展。此外,一种circRNA也可参与调控一种或多种miRNA的表达,这一发现有助于寻求肿瘤诊断的生物标记物及治疗靶点。因此该文通过综述国内外最新的有关circRNA通过miRNA调控肿瘤的研究,为进一步探究circRNA调节各种癌症疾病的发生和发展的具体机制奠定基础,也为相关疾病的治疗和预防提供更加可靠的理论依据。  相似文献   

9.
抑癌基因p53与肿瘤研究的最新进展   总被引:8,自引:0,他引:8  
贾春平 《生命科学》2008,20(3):450-453
p53基因是迄今为止已发现的与人类肿瘤发生相关性最高的抑癌基因,其主要生物学功能是通过调控DNA修复、细胞周期停滞和诱导细胞凋亡,维持基因组和细胞稳定,抑制肿瘤生长;肿瘤血管再生、微小RNA(microRNA,miRNA)及肿瘤干细胞是近几年来肿瘤发生机理研究领域的热点,本文综述了p53基因在肿瘤血管再生、miRNA、肿瘤干细胞中作用的最新研究进展及其在肿瘤治疗中的应用。  相似文献   

10.
竞争内源性RNA (competing endogenous RNA, ceRNA)理论是解释基因表达调控和生物功能的关键线索之一。这种机制联合了不同的RNA分子,为RNA之间相互作用和RNA调控网络提供了新的见解。最近的研究证实了ceRNA调控在肿瘤发生发展中的作用,其中大多以lncRNA-miRNA-mRNA和circRNA-miRNA-mRNA调控网络为主。研究表明,多种ceRNA调控网络参与肿瘤细胞增殖、侵袭和迁移、药物抗性、血管生成以及肿瘤免疫等,影响肿瘤发展进程。该文搜集了最新的ceRNA调控肿瘤发生发展过程的研究进展,讨论在此过程中发挥关键作用的ceRNA调控网络。  相似文献   

11.
环形RNA(circular RNA,circ RNA)广泛存在于各种生物细胞中,并且具有结构稳定、表达量丰富以及在不同组织及其不同发育阶段具有表达特异性等特征。目前认为,circ RNA可以在转录后水平调控基因表达,但是circ RNA的产生机制及其代谢途径仍然不是很清楚。迄今研究认为,circ RNA的主要生物学作用是作为微小RNA(micro RNA,miRNA)海绵体调控miRNA的表达。此外,circ RNA在肿瘤、动脉粥样硬化、糖尿病、帕金森病等多种疾病的发生发展中发挥了一定的作用。深入了解circ RNA的作用机制及其功能,有助于深入了解疾病的发生、发展机理,设计更好的预防、诊断和治疗疾病新策略。  相似文献   

12.
姜黄素是姜黄中主要的多酚类物质,具有抗炎、抗氧化、抗肿瘤等药理作用,而有关其选择性抗肿瘤作用日渐成为研究热点。姜黄素对肺癌、乳腺癌、肝癌、结直肠癌、恶性胶质瘤、骨肉瘤、白血病等多种恶性肿瘤均具有抑制作用,并且具有良好的生物安全性。自噬是真核细胞应激调控的生物学机制,与肿瘤的发生、发展存在复杂关系。近年来研究证实,姜黄素可通过多种信号通路调控自噬复合体,进而诱导肿瘤细胞自噬,达到抑制细胞生长、促进细胞死亡的作用。本文就姜黄素诱导肿瘤细胞自噬概况及其机制做一综述。  相似文献   

13.
MicroRNA(miRNA)是一类内源性、短小、大小为~22核苷酸的单链非编码RNA.miRNA广泛分布于真核细胞内,能够通过与靶mRNA3'末端非翻译区(3'-untranslated region,3'UTR)特异性结合来降解或抑制靶mRNA的翻译,从而对基因进行转录后基因表达的调控.miRNA不仅调控生物体的生长和发育过程,而且参与调控多种生理学和病理学过程,如细胞分化、细胞增殖、胰岛素的分泌、脂肪代谢以及肿瘤的形成.研究表明miRNA在肿瘤、糖尿病、代谢等多种疾病中发挥着重要的作用.本文对miRNA在脂肪细胞分化及脂类代谢中的调节作用进行综述.  相似文献   

14.
长链非编码RNA(long non-coding RNA,IncDNA)是指长度超过200个核苷酸、具有调控基因表达作用的非编码RNA。近年来研究表明,长链非编码RNA在肿瘤的发生、发展过程中发挥着促癌或抑癌作用,它们参与了细胞凋亡调控、肿瘤浸润与转移等过程;另外,它们还通过表观遗传调控的方式影响肿瘤细胞的生长。它们有希望成为新型肿瘤标志物和肿瘤治疗的靶点,在肿瘤诊断和治疗方面显示出良好的临床应用前号。  相似文献   

15.
环状RNA(circular RNA,circRNA)是近年来RNA领域最新的研究热点.它是一类由特殊的选择性剪切产生且在真核细胞中广泛表达的环形内源性RNA分子.研究发现,circRNA富含microRNA(miRNA)结合位点,可以发挥竞争性内源RNA作用,作为miRNA"海绵"来解除对其靶基因的抑制效应.近年来,circRNA作为一种新型调控分子调控miRNA功能的发挥,受到众多研究者的青睐.本文综述circRNA的产生机制,及其调控miRNA的最新研究进展与研究方法等.  相似文献   

16.
microRNA与肿瘤   总被引:7,自引:0,他引:7  
周凡  庄诗美 《生命科学》2008,20(2):207-212
microRNA(miRNA)是近年来发现的一类长度为19—25个核苷酸的非编码小分子RNA。它主要通过与靶标基因3’UTR的完全或不完全配对,降解靶标基因mRNA或抑制其翻译,从而参与调控个体发育、细胞凋亡、增殖及分化等生命活动。实验证据表明,miRNA可通过调控其靶标基因参与的信号通路,影响肿瘤的发生和发展,发挥着类似于癌基因或抑癌基因的功能。miRNA的发现为肿瘤发病机制的研究提供了新的思路,为肿瘤诊断和治疗提供了新的策略。本综述主要介绍近年来miRNA与肿瘤发生发展相关性研究领域的进展。  相似文献   

17.
MicroRNA(miRNA)是一类新鉴定的非蛋白质编码小RNA,它们在多种生物学过程中发挥重要作用。最新研究表明许多miRNA表达受RNA编辑、差别加工和组织特异性增强子调节而呈现时间和空间特异性,而且基于miRNA调节设计分子药物的前景很好。深入理解miRNA调节的机理有助于揭示一些疾病的发病机理,发现干预治疗的新分子靶标,以及最终建立有效的基因疗法。因此,本文将对miRNA调节机理的最新研究进行综述。  相似文献   

18.
非编码RNA(non-coding RNA,ncRNA)是一类不具有蛋白质编码潜能的RNA,可分为管家ncRNA和调控性ncRNA。微RNA(microRNA,miRNA)是研究得比较清楚的一类调控性ncRNA,不仅可调控细胞分化、增殖和凋亡,还可通过调节糖酵解途径中的限速酶[如己糖激酶(hexokinase,HK)、磷酸果糖激酶(phosphofructokinase, PFK)和丙酮酸激酶(pyruvate kinase, PK)]来调控肿瘤细胞的糖代谢。长链非编码RNA(long non-coding RNA, lncRNA)是另一类近年来引起重视的调控性ncRNA,它们可通过调节癌基因c Myc、葡糖转运蛋白(glucose transporter, GLUT)、HK和缺氧诱导因子等来调控肿瘤细胞的糖代谢。深入了解miRNA和lncRNA等调控性ncRNA调控肿瘤细胞糖代谢的机制不仅可以使我们更加深入地了解肿瘤的发生机制,而且可能为肿瘤的预防、诊断和治疗提供新方向。  相似文献   

19.
微RNA(microRNA,miRNA)是一类长约20~22nt的单链非编码RNA,它广泛存在于真核生物中并具有多种生物学功能。研究发现,miRNA在多种肿瘤细胞中表达异常,提示miRNA可能与肿瘤发生有关。MiRNA可以调控其靶基因参与的信号通路,而信号通路的异常和紊乱则在肿瘤的发生中起至关重要的作用。因此,有关miRNA调控信号通路的研究将为肿瘤的诊断和治疗带来福音。  相似文献   

20.
胃癌是人类最常见的肿瘤之一,其发病机制尚不完全清楚.微小RNA(microRNA,miRNA)是一组最近发现的长度为22个核苷酸左右的非编码RNA,具有负性调控基因表达的功能.本文对miRNA在胃癌发生中的作用及其表达调控机制进行综述.不断有文献显示,miRNA在多种肿瘤(包括胃癌)的发生过程中发挥着重要作用.作者和其他研究人员发现,miRNA的表达异常(如:miR-421和miR-21的上调或/和miR-31和miR-218的下调等)与胃癌的发生相关,提示miRNA是胃癌发生的重要因素.目前,miRNA表达的分子机制尚未完全明了.最近研究较清楚地显示,miRNA的表达受到DNA甲基化和组蛋白修饰等机制的调控.这说明,胃癌相关miRNA的表达水平受到表观遗传机制的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号