首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An in vivo method for predicting the nutrient status of individual algal cells using Raman microspectroscopy is described. Raman spectra of cells using 780 nm laser excitation show enhanced bands mainly attributable to chlorophyll a and beta-carotene. The relative intensities of chlorophyll a and beta-carotene bands changed under nitrogen limitation, with chlorophyll a bands becoming less intense and beta-carotene bands more prominent. Although spectra from N-replete and N-starved cell populations varied, each distribution was distinct enough such that multivariate classification methods, such as partial least squares discriminant analysis, could accurately predict the nutrient status of the cells from the Raman spectral data.  相似文献   

2.
Proteoglycans (PGs) are crucial extracellular matrix (ECM) components that are present in all tissues and organs. Pathological remodeling of these macromolecules can lead to severe diseases such as osteoarthritis or rheumatoid arthritis. To date, PG‐associated ECM alterations are routinely diagnosed by invasive analytical methods. Here, we employed Raman microspectroscopy, a laser‐based, marker‐free and non‐destructive technique that allows the generation of spectra with peaks originating from molecular vibrations within a sample, to identify specific Raman bands that can be assigned to PGs within human and porcine cartilage samples and chondrocytes. Based on the non‐invasively acquired Raman spectra, we further revealed that a prolonged in vitro culture leads to phenotypic alterations of chondrocytes, resulting in a decreased PG synthesis rate and loss of lipid contents. Our results are the first to demonstrate the applicability of Raman microspectroscopy as an analytical and potential diagnostic tool for non‐invasive cell and tissue state monitoring of cartilage in biomedical research. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Understanding and quantifying the temporal acquisition of host cell molecules by intracellular pathogens is fundamentally important in biology. In this study, a recently developed holographic optical trapping (HOT)‐based Raman microspectroscopy (RMS) instrument is applied to detect, characterize and monitor in real time the molecular trafficking of a specific molecular species (isotope‐labeled phenylalanine (L‐Phe(D8)) at the single cell level. This approach enables simultaneous measurement of the chemical composition of human cerebrovascular endothelial cells and the protozoan parasite Toxoplasma gondii in isolation at the very start of the infection process. Using a model to decouple measurement contributions from host and pathogen sampling in the excitation volume, the data indicate that manipulating parasites with HOT coupled with RMS chemical readout was an effective method for measurement of L‐Phe(D8) transfer from host cells to parasites in real‐time, from the moment the parasite enters the host cell.  相似文献   

4.
Polarization‐resolved Raman microspectroscopy with near‐infrared laser excitation was applied to intact human hair in order to non‐invasively investigate the conformation and orientation of the polypeptide chains. By varying the orientation of the hair shaft relative to the polarization directions of the laser/analyzer, a set of four polarized Raman spectra is obtained; this allows to simultaneously determine both the secondary structure of hair proteins and the orientation of the polypeptide strands relative to the axis of the hair shaft. For the amide I band, results from a quantitative analysis of the polarized Raman spectra are compared with theoretically expected values for fibers with uniaxial symmetry. Based on the polarization behavior of the amide I band and further vibrational bands, a partial ordering of α‐helical polypeptide strands parallel to the hair shaft can be concluded. We suggest that this microspectroscopic approach may be used for human hair diagnostics by detecting structural or orientational alterations of keratins. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Spontaneous Raman micro‐spectroscopy has been demonstrated great potential in delineating tumor margins; however, it is limited by slow acquisition speed. We describe a superpixel acquisition approach that can expedite acquisition between ~×100 and ×10 000, as compared to point‐by‐point scanning by trading off spatial resolution. We present the first demonstration of superpixel acquisition on rapid discrimination of basal cell carcinoma tumor from eight patients undergoing Mohs micrographic surgery. Results have been demonstrated high discriminant power for tumor vs normal skin based on the biochemical differences between nucleus, collagen, keratin and ceramide. We further perform raster‐scanned superpixel Raman imaging on positive and negative margin samples. Our results indicate superpixel acquisition can facilitate the use of Raman microspectroscopy as a rapid and specific tool for tumor margin assessment.  相似文献   

6.
The structure, transformation, and bioactivity of single living Schizosaccharomyces pombe cells at the molecular level have been studied in vivo by time- and space-resolved Raman spectroscopy. A time resolution of 100 s and a space resolution of 250 nm have been achieved with the use of a confocal Raman microspectrometer. The space-resolved Raman spectra of living S. pombe cells at different cell cycle stages were recorded in an effort to elucidate the molecular compositions of organelles, including nuclei, cytoplasm, mitochondria, and septa. The time- and space-resolved measurement of the central part of a dividing yeast cell showed continuous spectral evolution from that of the nucleus to those of the cytoplasm and mitochondria and finally to that of the septum, in accordance with the transformation during the cell cycle. A strong Raman band was observed at 1602 cm(-)(1) only when cells were under good nutrient conditions. The effect of a respiration inhibitor, KCN, on a living yeast cell was studied by measuring the Raman spectra of its mitochondria. A sudden disappearance of the 1602 cm(-)(1) band followed by the change in the shape and intensity of the phospholipid bands was observed, indicating a strong relationship between the cell activity and the intensity of this band. We therefore call this band "the Raman spectroscopic signature of life". The Raman mapping of a living yeast cell was also carried out. Not only the distributions of molecular species but also those of active mitochondria in the cell were successfully visualized in vivo.  相似文献   

7.
A fluorescence background is one of the common interference factors of the Raman spectroscopic analysis in the biology field. Shifted‐excitation Raman difference spectroscopy (SERDS), in which a slow (typically 1 Hz) modulation to excitation wavelength is coupled with a sequential acquisition of alternating shifted‐excitation spectra, has been used to separate Raman scattering from excitation‐shift insensitive background. This sequential method is susceptible to spectral change and thus is limited only to stable samples. We incorporated a fast laser modulation (200 Hz) and a mechanical streak camera into SERDS to effectively parallelize the SERDS measurement in a single exposure. The developed system expands the scope of SERDS to include temporary varying system. The proof of concept is demonstrated using highly fluorescent samples, including living algae. Quantitative performance in fluorescence rejection and the robustness of the method to the dynamic spectral change during the measurement are manifested.   相似文献   

8.
Field cancerisation (FC) is potentially an underlying cause of poor treatment outcomes of oral squamous cell carcinoma (OSCC). To explore the phenomenon using Raman microspectroscopy, brush biopsies from the buccal mucosa, tongue, gingiva and alveolus of healthy donors (n = 40) and from potentially malignant lesions (PML) of Dysplasia Clinic patients (n = 40) were examined. Contralateral normal samples (n = 38) were also collected from the patients. Raman spectra were acquired from the nucleus and cytoplasm of each cell, and subjected to partial least squares‐discriminant analysis (PLS‐DA). High discriminatory accuracy for donor and PML samples was achieved for both cytopalmic and nuclear data sets. Notably, contralateral normal (patient) samples were also accurately discriminated from donor samples and contralateral normal samples from patients with multiple lesions showed a similar spectral profile to PML samples, strongly indicating a FC effect. These findings support the potential of Raman microspectroscopy as a screening tool for PML using oral exfoliated cells.  相似文献   

9.
Raman microspectroscopy is widely used for musculoskeletal tissues studies. But the fluorescence background obscures prominent Raman bands of mineral and matrix components of bone tissue. A 532-nm laser irradiation has been used efficiently to remove the fluorescence background from Raman spectra of cortical bone. Photochemical bleaching reduces over 80% of the fluorescence background after 2 h and is found to be nondestructive within 40 min. The use of electron multiplying couple charge detector (EMCCD) enables to acquire Raman spectra of bone tissues within 1-5 s range and to obtain Raman images less than in 10 min.  相似文献   

10.
Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air‐blood barrier formation. Here, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI‐like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three‐dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label‐free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.   相似文献   

11.
Raman stable isotope labeling with 2H, 13C or 15N has been reported as an elegant approach to investigate cellular metabolic activity, which is of great importance to reveal the functions of microorganisms in native environments. A new strategy termed Raman 18O-labeling was developed to probe the metabolic activity of bacteria. Raman 18O-labeling refers to the combination of Raman microspectroscopy with 18O-labeling using H218O. At an excitation wavelength of 532 nm, the incorporation of 18O into the amide I group of proteins and DNA/RNA bases was observed in Escherichia coli cells, while for an excitation wavelength electronically resonant with DNA or aromatic amino acid absorption at 244 nm 18O assimilation was detected using chemometric tools rather than visual inspection. Raman 18O-labeling at 532 nm combined with 2D correlation analysis confirmed the assimilation of 18O in proteins and nucleic acids and revealed the growth strategy of E. coli cells; they underwent protein synthesis followed by nucleic acid synthesis. Independent cultural replicates at different incubation times corroborated the reproducibility of these results. The variations in spectral features of 18O-labeled cells revealed changes in physiological information of cells. Hence, Raman 18O-labeling could provide a powerful tool to identify metabolically active bacterial cells.  相似文献   

12.
Botryococcus braunii, B race is a unique green microalga that produces large amounts of liquid hydrocarbons known as botryococcenes that can be used as a fuel for internal combustion engines. The simplest botryococcene (C30) is metabolized by methylation to give intermediates of C31, C32, C33, and C34, with C34 being the predominant botryococcene in some strains. In the present work we have used Raman spectroscopy to characterize the structure of botryococcenes in an attempt to identify and localize botryococcenes within B. braunii cells. The spectral region from 1600–1700 cm−1 showed ν(C=C) stretching bands specific for botryococcenes. Distinct botryococcene Raman bands at 1640 and 1647 cm−1 were assigned to the stretching of the C=C bond in the botryococcene branch and the exomethylene C=C bonds produced by the methylations, respectively. A Raman band at 1670 cm−1 was assigned to the backbone C=C bond stretching. Density function theory calculations were used to determine the Raman spectra of all botryococcenes to compare computed theoretical values with those observed. The analysis showed that the ν(C=C) stretching bands at 1647 and 1670 cm−1 are actually composed of several closely spaced bands arising from the six individual C=C bonds in the molecule. We also used confocal Raman microspectroscopy to map the presence and location of methylated botryococcenes within a colony of B. braunii cells based on the methylation-specific 1647 cm−1 botryococcene Raman shift.  相似文献   

13.
Using the AKR/J mouse model, the potential of Raman spectroscopy for monitoring lymphoma in predisposed subjects is demonstrated by discriminating lymphoma infiltration in spleens; the relevance of different excitation profiles is shown. Under green excitation with optimal fluorescence bleaching, stronger DNA bands, intensity variations at amide‐III and phenylalanine bands, and the behavior of the 1606/1639 cm–1 doublet correlate with tumorigenesis. Under red excitation, Raman fingerprints with multivariate models help to discriminate AKR/J‐mouse histological subtypes: Lymphoblastic lymphoma (LB) is found significantly distant from both separated lymphocytic lymphoma (LL) and healthy spleen; this agrees with histology since LB has well differentiated large lymphoma cells, while LL, with smaller cells similar to normal lymphocytes, usually cannot be discriminated from normal tissue without histoimmunoassays. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Single band coherent anti‐Stokes Raman scattering (CARS) microscopy is one of the fastest implementation of nonlinear vibrational imaging allowing for video‐rate image acquisition of tissue. This is due to the large Raman signal in the C—H‐stretching region. However, the chemical specificity of such images is conventionally assumed to be low. Nonetheless, CARS imaging within the C—H‐stretching region enables detection of single cells and nuclei, which allows for histopathologic grading of tissue. Relevant information such as nucleus to cytoplasm ratio, cell density, nucleus size and shape is extracted from CARS images by innovative image processing procedures. In this contribution CARS image contrast within the C—H‐stretching region is interpreted by direct comparison with Raman imaging and correlated to the tissue composition justifying the use of CARS imaging in this wavenumber region for biomedical applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Simultaneous photoreduction and Raman spectroscopy with 532 nm laser has been used to study the effects of organophosphate (chlorpyrifos [CPF]) exposure on human red blood cells (RBCs). Since in RBCs, auto‐oxidation causes oxidative stress, which, in turn, is balanced by the cellular detoxicants, any possible negative effect of CPF on this balance should results in an increased level of damaged (permanently oxygenated) hemoglobin. Therefore, when 532 nm laser, at a suitable power, was applied to photoreduce the cells, only common oxygenated form of hemoglobin got photoreduced leaving the permanently oxygenated hemoglobin detectable in the Raman spectra simultaneously excited by the same laser. Using the technique effects of CPF to build up oxidative stress on RBCs could be detected at concentrations as low as 10 ppb from a comparison of relative strengths of different Raman bands. Experiments performed using simultaneously exposing the cells, along with CPF, to H2O2 (oxidative agent) and/or 3‐Aminotriazole (inhibitor of anti‐oxidant catalase), suggested role of CPF to suppress the cellular anti‐oxidant mechanism. Since the high level of damaged hemoglobin produced by the action of CPF (at concentrations >100 ppm) is expected to cause membrane damage, atomic force microscopy (AFM) was used to identify such damages.Upper panel: Raman spectra of normal, photoreduced CPF exposed and unexposed RBCs. Lower panel: The weak Fe‐O2 Raman band for CPF exposed cells shown on the left. The AFM images of unexposed and exposed cells are shown on the right. Scale bar, 2.5 μm.   相似文献   

16.
Articular cartilage posesses unique material properties due to a complex depth-dependent composition of sub-components. Raman spectroscopy has proven valuable in quantifying this composition through cartilage cross-sections. However, cross-sectioning requires tissue destruction and is not practical in situ. In this work, Raman spectroscopy-based multivariate curve resolution (MCR) was employed in porcine cartilage samples (n = 12) to measure collagen, glycosaminoglycan, and water distributions through the surface for the first time; these were compared against cross-section standards. Through the surface Raman measurements proved reliable in predicting composition distribution up to a depth of approximately 0.5 mm. A fructose-based optical clearing agent (OCA) was also used in an attempt to further improve depth of resolution of this measurement method. However, it did not; mainly due to a high-spectral overlap with the Raman spectra of main cartilage sub-components. This measurement technique potentially could be used in situ, to better understand the etiology of joint diseases such as osteoarthritis (OA).  相似文献   

17.
The present paper studies the applicability of a portable cost‐effective spectroscopic system for the optical screening of skin tumors. in vivo studies of Raman scattering and autofluorescence (AF) of skin tumors with the 785 nm excitation laser in the near‐infrared region included malignant melanoma, basal cell carcinoma and various types of benign neoplasms. The efficiency of the portable system was evaluated by comparison with a highly sensitive spectroscopic system and with the diagnosis accuracy of a human oncologist. Partial least square analysis of Raman and AF spectra was performed; specificity and sensitivity of various skin oncological pathologies detection varied from 78.9% to 100%. Hundred percent accuracy of benign and malignant skin tumors differentiation is possible only with a combined analysis of Raman and AF signals.   相似文献   

18.
A system is described for in vivo noninvasive measurements of hemoglobin oxygen saturation (HbO2Sat) at the microscopic level. The spectroscopic basis for the application is resonant Raman enhancement of Hb in the violet/ultraviolet region, allowing simultaneous identification of oxy- and deoxyhemoglobin with the same excitation wavelength. The heme vibrational bands are well known, but the technique has never been used to determine microvascular HbO2Sat in vivo. A diode laser light (power: 0.3 mW) was focused onto sample areas 15-30 microm in diameter. Raman spectra were obtained in backscattering geometry by using a microscope coupled to a spectrometer and a cooled detector. Calibration was performed in vitro by using glass capillaries containing blood at several Hb concentrations, equilibrated at various oxygen tensions. HbO2Sat was estimated using the Raman band intensities at 1,360 and 1,375 cm(-1). Glass capillary path length and Hb concentration had no effect on HbO2Sat estimated from Raman spectra. In vivo observations were made in blood flowing in microvessels of the rat mesentery. The Hb Raman peaks observed in oxygenated and deoxygenated blood were consistent with earlier Raman studies that used Hb solutions and isolated cells. The method allowed HbO2Sat determinations in the whole range of arterioles, venules, and capillaries. Tissue transillumination allowed diameter and erythrocyte velocity measurements in the same vessels. Raman microspectroscopy offers distinct advantages over other currently used techniques by providing noninvasive and reliable in vivo determinations of HbO2Sat in thin tissues as well as in solid organs and tissues, which are unsuitable for techniques requiring transillumination.  相似文献   

19.
High spatial resolution Raman maps of fixed cells in an aqueous environment are reported. These maps were obtained by collecting individual Raman spectra via a Raman microspectrometer in a raster pattern on a 0.5-microm grid and assembling pseudocolor maps from the spectral hypercubes by multivariate methods. The Raman maps show the nucleus and the nucleoli of cells as well as subcellular organization in the cytoplasm. In particular, the distribution of mitochondria in the perinuclear region could be demonstrated by correlating distinct areas of the Raman maps with corresponding areas of fluorescence maps of the same cells after staining with mitochondria-specific labels. To the best of our knowledge, this is the first report of label-free detection of mitochondria inside a somatic mammalian cell using Raman microspectroscopy.  相似文献   

20.
The object of this paper is in vivo study of skin spectral-characteristics in patients with kidney failure by conventional Raman spectroscopy in near infrared region. The experimental dataset was subjected to discriminant analysis with the projection on latent structures (PLS-DA). Application of Raman spectroscopy to investigate the forearm skin in 85 adult patients with kidney failure (90 spectra) and 40 healthy adult volunteers (80 spectra) has yielded the accuracy of 0.96, sensitivity of 0.94 and specificity of 0.99 in terms of identifying the target subjects with kidney failure. The autofluorescence analysis in the near infrared region identified the patients with kidney failure among healthy volunteers of the same age group with specificity, sensitivity, and accuracy of 0.91, 0.84, and 0.88, respectively. When classifying subjects by the presence of kidney failure using the PLS-DA method, the most informative Raman spectral bands are 1315 to 1330, 1450 to 1460, 1700 to 1800 cm−1. In general, the performed study demonstrates that for in vivo skin analysis, the conventional Raman spectroscopy can provide the basis for cost-effective and accurate detection of kidney failure and associated metabolic changes in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号