首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.  相似文献   

2.
The discovery and application of the CRISPR/Cas9 genome editing method has greatly enhanced the ease with which transgenic manipulation can occur. We applied this technology to the mollusc, Crepidula fornicata, and have successfully created transgenic embryos expressing mCherry fused to endogenous β‐catenin. Specific integration of the fluorescent reporter was achieved by homologous recombination with a β‐catenin‐specific donor DNA containing the mCherry coding sequence. This fluorescent gene knock‐in strategy permits in vivo observations of β‐catenin expression during embryonic development and represents the first demonstration of CRISPR/Cas9‐mediated transgenesis in the Lophotrochozoa superphylum. The CRISPR/Cas9 method is a powerful and economical tool for genome modification and presents an option for analysis of gene expression in not only major model systems, but also in those more diverse species that may not have been amenable to the classic methods of transgenesis. This approach will allow one to generate transgenic lines of snails for future studies. genesis 53:237–244, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
4.
Targeted knock‐in (KI) can be achieved in embryos by clustered regularly interspaced short palindromic repeats (CRISPR)‐assisted homology directed repair (HDR). However, HDR efficiency is constrained by the competition of nonhomologous end joining. The objective of this study was to explore whether CRISPR‐assisted targeted KI rates can be improved in bovine embryos by exposure to the HDR enhancer RS‐1. In vitro produced zygotes were injected with CRISPR components (300 ng/µl Cas9 messenger RNA and 100 ng/µl single guide RNA against a noncoding region) and a single‐stranded DNA (ssDNA) repair template (100 ng/µl). ssDNA template contained a 6 bp XbaI site insert, allowing targeted KI detection by restriction analysis, flanked by 50 bp homology arms. Following microinjection, zygotes were exposed to 0, 3.75, or 7.5 µM RS‐1 for 24 hr. No differences were noted between groups in terms of development or genome edition rates. However, targeted KI rates were doubled in the group exposed to 7.5 µM RS‐1 compared to the others (52.8% vs. 25% and 23.1%, for 7.5, 0, and 3.75 µM, respectively). In conclusion, transient exposure to 7.5 µM RS‐1 enhances targeted KI rates resulting in approximately half of the embryos containing the intended mutation, hence allowing direct KI generation in embryos.  相似文献   

5.
6.
The CRISPR/Cas system has rapidly emerged recently as a new tool for genome engineering, and is expected to allow for controlled manipulation of specific genomic elements in a variety of species. A number of recent studies have reported the use of CRISPR/Cas for gene disruption (knockout) or targeted insertion of foreign DNA elements (knock‐in). Despite the ease of simple gene knockout and small insertions or nucleotide substitutions in mouse zygotes by the CRISPR/Cas system, targeted insertion of large DNA elements remains an apparent challenge. Here the generation of knock‐in mice with successful targeted insertion of large donor DNA elements ranged from 3.0 to 7.1 kb at the ROSA26 locus using the CRISPR/Cas system was achieved. Multiple independent knock‐in founder mice were obtained by injection of hCas9 mRNA/sgRNA/donor vector mixtures into the cytoplasm of C57BL/6N zygotes when the injected zygotes were treated with an inhibitor of actin polymerization, cytochalasin. Successful germ line transmission of three of these knock‐in alleles was also confirmed. The results suggested that treatment of zygotes with actin polymerization inhibitors following microinjection could be a viable method to facilitate targeted insertion of large DNA elements by the CRISPR/Cas system, enabling targeted knock‐in readily attainable in zygotes. genesis 54:65–77, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a “gene drive,” to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an “insertion/deletion” (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of “super-mendelian” inheritance from both male and female mice.

This study shows that while Cas9 expression during meiosis I promotes genotype conversion - the mechanism underlying CRISPR ’gene drive’ - in both male and female mice, timing and high levels of Cas9 protein are critical to achieve robust efficiency.  相似文献   

8.
Genome editing via the homology‐directed repair (HDR) pathway in somatic plant cells is very inefficient compared with error‐prone repair by nonhomologous end joining (NHEJ). Here, we increased HDR‐based genome editing efficiency approximately threefold compared with a Cas9‐based single‐replicon system via the use of de novo multi‐replicon systems equipped with CRISPR/LbCpf1 in tomato and obtained replicon‐free but stable HDR alleles. The efficiency of CRISPR/LbCpf1‐based HDR was significantly modulated by physical culture conditions such as temperature and light. Ten days of incubation at 31 °C under a light/dark cycle after Agrobacterium‐mediated transformation resulted in the best performance among the tested conditions. Furthermore, we developed our single‐replicon system into a multi‐replicon system that effectively increased HDR efficiency. Although this approach is still challenging, we showed the feasibility of HDR‐based genome editing of a salt‐tolerant SlHKT1;2 allele without genomic integration of antibiotic markers or any phenotypic selection. Self‐pollinated offspring plants carrying the HKT1;2 HDR allele showed stable inheritance and germination tolerance in the presence of 100 mm NaCl. Our work may pave the way for transgene‐free editing of alleles of interest in asexually and sexually reproducing plants.  相似文献   

9.
We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock‐in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near‐maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development.  相似文献   

10.
Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired‐sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired‐sgRNA cloning, our strategy only requires the synthesis of two gRNA‐containing primers which largely reduces the cost. We further compared efficiencies of paired‐sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA‐sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10‐fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired‐sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418‐resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants.  相似文献   

11.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

12.
β‐thalassaemia is a prevalent hereditary haematological disease caused by mutations in the human haemoglobin β (HBB) gene. Among them, the HBB IVS2‐654 (C > T) mutation, which is in the intron, creates an aberrant splicing site. Bone marrow transplantation for curing β‐thalassaemia is limited due to the lack of matched donors. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), as a widely used tool for gene editing, is able to target specific sequence and create double‐strand break (DSB), which can be combined with the single‐stranded oligodeoxynucleotide (ssODN) to correct mutations. In this study, according to two different strategies, the HBB IVS2‐654 mutation was seamlessly corrected in iPSCs by CRISPR/Cas9 system and ssODN. To reduce the occurrence of secondary cleavage, a more efficient strategy was adopted. The corrected iPSCs kept pluripotency and genome stability. Moreover, they could differentiate normally. Through CRISPR/Cas9 system and ssODN, our study provides improved strategies for gene correction of β‐Thalassaemia, and the expression of the HBB gene can be restored, which can be used for gene therapy in the future.  相似文献   

13.
Engineered nucleases can be used to induce site‐specific double‐strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error‐prone non‐homologous end‐joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickase inducing single‐strand breaks (SSBs). Here we show that only the nuclease but not the nickase is an efficient tool for NHEJ‐mediated mutagenesis in plants. We demonstrate the stable inheritance of nuclease‐induced targeted mutagenesis events in the ADH1 and TT4 genes of Arabidopsis thaliana at frequencies from 2.5 up to 70.0%. Deep sequencing analysis revealed NHEJ‐mediated DSB repair in about a third of all reads in T1 plants. In contrast, applying the nickase resulted in the reduction of mutation frequency by at least 740‐fold. Nevertheless, the nickase is able to induce HR at similar efficiencies as the nuclease or the homing endonuclease I–SceI. Two different types of somatic HR mechanisms, recombination between tandemly arranged direct repeats as well as gene conversion using the information on an inverted repeat could be enhanced by the nickase to a similar extent as by DSB‐inducing enzymes. Thus, the Cas9 nickase has the potential to become an important tool for genome engineering in plants. It should not only be applicable for HR‐mediated gene targeting systems but also by the combined action of two nickases as DSB‐inducing agents excluding off‐target effects in homologous genomic regions.  相似文献   

14.
Genetic engineering in livestock has been greatly enhanced through the use of artificial programmed nucleases such as the recently emerged clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated 9 (Cas9) system. We recently reported our successful application of the CRISPR/Cas9 system to engineer the goat genome through micro‐injection of Cas9 mRNA and sgRNAs targeting MSTN and FGF5 in goat embryos. The phenotypes induced by edited loss‐of‐function mutations of MSTN remain to be evaluated extensively. We demonstrate the utility of this approach by disrupting MSTN, resulting in enhanced body weight and larger muscle fiber size in Cas9‐mediated gene‐modified goats. The effects of genome modifications were further characterized by H&E staining, quantitative PCR, Western blotting and immunofluorescence staining. Morphological and genetic analyses indicated the occurrence of phenotypic and genotypic modifications. We further provide sufficient evidence, including breeding data, to demonstrate the transmission of the knockout alleles through the germline. By phenotypic and genotypic characterization, we demonstrated the merit of using the CRISPR/Cas9 approach for establishing genetically modified livestock with an enhanced production trait.  相似文献   

15.
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9‐guide RNA (gRNA) and LbCas12a‐CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium‐mediated transformation. On‐target mutation analysis showed that 90%–100% of the Cas9‐edited T0 plants carried indel mutations and 63%–77% of them were homozygous or biallelic mutants. In contrast, 0%–60% of Cas12a‐edited T0 plants had on‐target mutations. We then conducted CIRCLE‐seq analysis to identify genome‐wide potential off‐target sites for Cas9. A total of 18 and 67 potential off‐targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off‐target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.  相似文献   

16.
Protozoan pathogens that cause leishmaniasis in humans are relatively refractory to genetic manipulation. In this work, we implemented the CRISPR‐Cas9 system in Leishmania parasites and demonstrated its efficient use for genome editing. The Cas9 endonuclease was expressed under the control of the Dihydrofolate Reductase‐Thymidylate Synthase (DHFR‐TS) promoter and the single guide RNA was produced under the control of the U6snRNA promoter and terminator. As a proof of concept, we chose to knockout a tandemly repeated gene family, the paraflagellar rod‐2 locus. We were able to obtain null mutants in a single round of transfection. In addition, we confirmed the absence of off‐target editions by whole genome sequencing of two independent clones. Our work demonstrates that CRISPR‐Cas9‐mediated gene knockout represents a major improvement in comparison with existing methods. Beyond gene knockout, this genome editing tool opens avenues for a multitude of functional studies to speed up research on leishmaniasis.  相似文献   

17.
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease‐based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium‐delivered CRISPR/Cas9 for high‐frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4‐reductase or anthocyaninless genes (a1 and a4). T0 transgenic events carrying mono‐ or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi‐II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target‐specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize.  相似文献   

18.
The Streptococcus‐derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single‐guide RNA (sgRNA) for target DNA recognition and the CRISPR‐associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ‐line‐specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ‐line‐specific promoters (pDD45‐GT and pLAT52‐GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.  相似文献   

19.
We report model experiments in which simple microinjection of fertilized eggs has been used to effectively perform homology‐directed repair (HDR)‐mediated gene editing in the two Xenopus species used most frequently for research: X. tropicalis and X. laevis. We have used long single‐stranded DNAs having phosphorothioate modifications as donor templates for HDR at targeted genomic sites using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR‐associated protein 9 (CRISPR/Cas9) system. First, X. tropicalis tyr mutant (i.e., albino) embryos were successfully rescued: partially pigmented tadpoles were seen in up to 35% of injected embryos, demonstrating the potential for efficient insertion of targeted point mutations. Second, in order to demonstrate the ability to tag genes with fluorescent proteins (FPs), we targeted the melanocyte‐specific gene slc45a2.L of X. laevis to label it with the Superfolder green FP (sfGFP), seeing mosaic expression of sfGFP in melanophores in up to 20% of injected tadpoles. Tadpoles generated by these two approaches were raised to sexual maturity, and shown to successfully transmit HDR constructs through the germline with precise targeting and seamless recombination. F1 embryos showed rescue of the tyr mutation (X. tropicalis) and tagging in the appropriate pigment cell‐specific manner of slc45a2.L with sfGFP (X. laevis).  相似文献   

20.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号