首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports a novel category of coating structure SiO2@Eu(MABA‐Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA‐Si)3·(ClO4)3·5H2O was synthesized using HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3)2 (MABA‐Si) and was used as a ligand. Furthermore, the as‐prepared silica NPs were successfully coated with the ‐Si(OCH2CH3)3 group of MABA‐Si to form Si–O–Si chemical bonds by means of the hydrolyzation of MABA‐Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA‐Si)3·(ClO4)3·5H2O. Coating structure SiO2@Eu(MABA‐Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core‐SiO2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA‐Si) was ~20 nm. In the binary complex Eu(MABA‐Si)3·(ClO4)3·5H2O, the fluorescence spectra illustrated that the energy of the ligand MABA‐Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO2@Eu(MABA‐Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core‐SiO2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained.  相似文献   

2.
Core–shell structured quantum dot (QD)–silica fluorescent nanoparticles have attracted a great deal of attention due to the excellent optical properties of QDs and the stability of silica. In this study, core–shell structured CdTe/CdS@SiO2@CdTe@SiO2 fluorescent nanospheres were synthesized based on the Stöber method using multistep silica encapsulation. The second silica layer on the CdTe QDs maintained the optical stability of nanospheres and decreased adverse influences on the probe during subsequent processing. Red‐emissive CdTe/CdS QDs (630 nm) were used as a built‐in reference signal and green‐emissive CdTe QDs (550 nm) were used as a responding probe. The fluorescence of CdTe QDs was greatly quenched by added S2?, owing to a S2?‐induced change in the CdTe QDs surface state in the shell. Upon addition of Cd2+ to the S2?‐quenched CdTe/CdS@SiO2@CdTe@SiO2 system, the responding signal at 550 nm was dramatically restored, whereas the emission at 630 nm remained almost unchanged; this response could be used as a ratiometric ‘off–on’ fluorescent probe for the detection of Cd2+. The sensing mechanism was suggested to be: the newly formed CdS‐like cluster with a higher band gap facilitated exciton/hole recombination and effectively enhanced the fluorescence of the CdTe QDs. The proposed probe shows a highly sensitive and selective response to Cd2+ and has potential application in the detection of Cd2+ in environmental or biological samples.  相似文献   

3.
Monoclinic‐type tetragonal LaPO4:Eu (core) and LaPO4:Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared using a urea‐based co‐precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol–gel process to improve their solubility and colloidal stability in aqueous and non‐aqueous media. The prepared nano‐products were systematically characterized by X‐ray diffraction pattern, transmission electron microscopy, energy dispersive X‐ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano‐products were in the range 80–120 nm and 10–15 nm, respectively. High solubility of the silica‐modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic‐based biomedical applications.  相似文献   

4.
In this study, Eu‐doped Li2(Ba1‐xSrx)SiO4 powders (x = 0, 0.2, 0.4, and 0.6) were synthesized at 850°C in a reduction atmosphere (5% H2 + 95% N2) for a duration of 1 h using a solid‐state reaction method. The reduction atmosphere was infused as the synthesis temperature reached 850°C, and was removed as the temperature dropped to 800–500°C. Li2(Ba1‐xSrx)SiO4 (or Li2BaSiO4), (Ba,Sr)2SiO4 (or BaSiO4), and Li4SiO4 phases co‐existed in the synthesized Eu‐doped Li2(Ba1‐xSrx)SiO4 powders. A new finding was that the reduction atmosphere removing (RAR) temperature of the Li2(Ba1‐xSrx)SiO4 phosphors had a large effect on their photoluminescence excitation (PLE) and PL properties. Except for the 800°C‐RAR‐treated Li2BaSiO4 phosphor, PLE spectra of all other Li2(Ba1‐xSrx)SiO4 phosphors had one broad emission band with two emission peaks centred at ~242 and ~283 nm; these PL spectra had one broad emission band with one emission peak centred at 502–514 nm. We showed that the 800°C‐RAR‐treated Li2BaSiO4 phosphor emitted a red light and all other Li2(Ba1‐xSrx)SiO4 phosphors emitted a green light. Reasons for these results are discussed thoroughly.  相似文献   

5.
In this work, a simple and selective fluorescence sensor approach called ‘turn‐on–off’ for the determination of thiamine (TM) has been developed. As known, the o‐phenanthroline (o‐phen) has inner fluorescence, though when reacted with zinc ions to form the o‐phen–Zn2+ complex the fluorescence intensity was enhanced effectively, while upon addition of TM into the o‐phen–Zn2+ complex solution, the intensity of the system was gently quenched, which was termed the ‘turn‐on–off’ probe. Notably, the method possessed highly selective, sensitive determination for TM with a detection limit of 0.25 μmol L?1 and the reduced fluorescence intensity was proportional to the concentration of TM in the range 0.84–80.0 μmol L?1. Besides, the proposed mechanism was also investigated through exploring the Fourier transform infrared (FT‐IR), nuclear magnetic resonance (NMR) spectroscopy. Furthermore, this manner was successfully applied into practical samples for TM detection with satisfactory results.  相似文献   

6.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

7.
The oxygen electrode plays a vital role in the successful commercialization of renewable energy technologies, such as fuel cells and water electrolyzers. In this study, the Prussian blue analogue‐derived nitrogen‐doped nanocarbon (NC) layer‐trapped, cobalt‐rich, core–shell nanostructured electrocatalysts (core–shell Co@NC) are reported. The electrode exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble electrodes. The core–shell Co@NC‐loaded nickel foam exhibits a lower overpotential of 330 mV than that of IrO2 on nickel foam at 10 mA cm?2 and has a durability of over 400 h. The commercial Pt/C cathode‐assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm?2 at a cell voltage of 1.59 V, which is 70 mV lower than that of the IrO2–anode water electrolyzer. Over the long‐term chronopotentiometry durability testing, the IrO2–anode water electrolyzer shows a cell voltage loss of 230 mV (14%) at 95 h, but the loss of the core–shell Co@NC–anode electrolyzer is only 60 mV (4%) even after 350 h cell‐operation. The findings indicate that the Prussian blue analogue is a class of inorganic nanoporous materials that can be used to derive metal‐rich, core–shell electrocatalysts with enriched active centers.  相似文献   

8.
High‐quality CdxZn1 – xSe and CdxZn1 – xSe/ZnS core/shell quantum dots (QDs) emitting in the violet–green spectral range have been successfully prepared using hydrothermal methods. The obtained aqueous CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs exhibit a tunable photoluminescence (PL) emission (from 433.5 nm to 501.2 nm) and a favorable narrow photoluminescence bandwidth [full width at half maximum (FWHM): 30–42 nm]. After coating with a ZnS shell, the quantum yield increases from 40.2% to 48.1%. These CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were characterized by transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy. To further understand the alloying mechanism, the growth kinetics of CdxZn1 – xSe were investigated through measuring the fluorescence spectra and X‐ray diffraction spectra at different growth intervals. The results demonstrate that the inverted ZnSe/CdSe core/shell structure is formed initially after the injection of Cd2+. With further heating, the core/shell structured ZnSe/CdSe is transformed into alloyed CdxZn1 – xSe QDs with the diffusion of Cd2+ into ZnSe matrices. With increasing the reaction temperature from 100 °C to 180 °C, the duration time of the alloying process decreases from 210 min to 20 min. In addition, the cytotoxicity of CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were investigated. The results indicate that the as‐prepared CdxZn1 – xSe/ZnS QDs have low cytotoxicity, which makes them a promising probe for cell imaging. Finally, the as‐prepared CdxZn1 – xSe/ZnS QDs were utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (1.8 nM).  相似文献   

9.
Ag2S@CdS core–shell particles were synthesized with different Cd source content as a measure of shell thickness using a pulsed microwave irradiation method. The particles were verified structurally using X‐ray diffraction, energy dispersive X‐ray analysis and transmission electron microscopy. Optical spectroscopy revealed that core–shells show an absorption peak at 750 nm and an emission peak located around 800 nm after 6 min of microwave irradiation. With continued microwave treatment, the NIR luminescence first vanished but it was revived after 12 min of irradiation, which was 100 nm red shifted. This new type of NIR emission in Ag2S with sizes greater than 5 nm is due to the proximity of a highly deficient CdS shell with strong red emission that was stable for more than 6 months in water. A mechanism has been suggested for this type of emission.  相似文献   

10.

We numerically study plasmonic solar cells in which a square periodic array of core–shell Ag@SiO2 nanospheres (NSs) are placed on top of the indium tin oxide (ITO) layer using a 3D finite-difference time-domain (FDTD) method. We investigate the influence of various parameters such as the periodicity of the array, the Ag core diameter, the active layer thickness, the shell thickness, and the refractive index of the shell materials on the optical performance of the organic solar cells (OSC). Our results show that the optimal periodicity of the array of NSs is dependent on the size of Ag core NSs in order to maximize optical absorption in the active layer. A very thin active layer (<70 nm) and an ultrathin (<5 nm) SiO2 shell are needed in order to obtain the highest optical absorption enhancement. Strong electric field localization is observed around the plasmonic core–shell nanoparticles as a result of localized surface plasmon resonance (LSPR) excited by Ag NSs with and without silica shell. Embedding 50 nm Ag NSs with 1-nm-thick SiO2 shell thickness on top of ITO leads to an enhanced intrinsic optical absorption in a 40-nm-thick poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layer by 24.7% relative to that without the NSs. The use of 1-nm-thick ZnO shell instead of SiO2 leads to an enhanced intrinsic absorption in a 40-nm-thick P3HT:PCBM active layer by 27%.

  相似文献   

11.
Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically ordered L10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOx precursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering of L10‐Pt–Ni NPs. As a result, the best‐performing carbon supported L10‐PtNi0.8Co0.2 catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1 m HClO4 with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that the L10‐PtNi0.8Co0.2 core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.  相似文献   

12.
A novel ratiometric fluorescence nanosensor for superoxide anion (O2??) detection was designed with gold nanoparticles‐bovine serum albumin (AuNPs‐BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs‐BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs‐BSA acted as binding points for the self‐assembly of Tb3+ and GMP to form core‐shell AuNPs‐BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs‐BSA and Tb/GMP NCPs. The AuNPs‐BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O2??. The resulting AuNPs‐BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O2?? demonstrated high sensitivity and selectivity with a wide linear response range (14 nM–10 μM) and a low detection limit (4.7 nM).  相似文献   

13.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

14.
Efficient spatial charge separation is critical for solar energy conversion over solid photocatalysts. The development of efficient visible‐light photocatalysts has been of immense interest, but with limited success. Here, multiband core–shell oxynitride nanocube heterojunctions composed of a tantalum nitride (Ta3N5) core and nitrogen‐doped sodium tantalate (NaTaON) shell have been constructed via an in situ phase‐induced etching chemical strategy. The photocatalytic water splitting performance of sub‐20‐nm Ta3N5@NaTaON junctions exhibits an extraordinarily high photocatalytic activity toward oxygen and hydrogen evolution. Most importantly, the combined experimental results and theoretical calculations reveal that the strong interfacial Ta? O? N bonding connection as a touchstone among Ta3N5@NaTaON junctions provides a continuous charge transport pathway rather than a random charge accumulation. The prolonged photoexcited charge carrier lifetime and suitable band matching between the Ta3N5 core and NaTaON shell facilitate the separation of photoinduced electron–hole pairs, accounting for the highly efficient photocatalytic performance. This work establishes the use of (oxy)nitride heterojunctions as viable photocatalysts for the conversion of solar energy into fuels.  相似文献   

15.
A microwave‐induced metal dissolution strategy is developed for in situ synthesis of copper nanowires/ZnS (CuNWs/ZnS) hybrids with core–shell structure. The CuNWs are used as microwave antennas to create local “super‐hot” surfaces to further initiate ZnS crystallization with full coverage on CuNWs. With the help of S2?, the hot metal surface further results in the CuNWs dissolution with promoted Cu+ diffusion and incorporation into the ZnS lattice. With the narrowed bandgap of ZnS and the strongly coupled interface between CuNWs and ZnS created by microwaves, the as‐prepared hybrid composites exhibit an enhanced activity and stability in visible light for the photocatalytic H2 evolution. The corresponding H2 evolution rate reaches up to 10722 µmol h?1 g?1 with apparent quantum efficiency (AQE) of 69% under 420 nm LED irradiation, showing a remarkably high AQE among the noble‐metal free visible light‐driven photocatalysts and demonstrating a promising potential in practical applications to deal with the energy crisis.  相似文献   

16.
In this paper, the Eu3+–Eu2+ (4%, molar ratio)‐doped xAl2O3–ySiO2 (x = 0–2.5, y = 1–5) and xAl2O3–zMgO (x = 0–1.5, z = 0–3) composites phosphors with different Al2O3 to SiO2 (A/S) and Al2O3 to MgO (A/M) ratios were prepared using a high‐temperature solid‐state reaction under air atmosphere. The effects of the A/S and A/M on luminescence properties, crystal structure, electron spin resonance, and Commission Internationale de l’Eclairage chromaticity coordinates of the samples were systematically analyzed. These results indicated that the different A/S and A/M ratios in the matrix effectively affected the crystal phase, degrees of self‐reduction of Eu3+, and led the relative emission intensity of Eu2+/Eu3+ to change and adjust.  相似文献   

17.
In this work, the composites of magnetic Fe3O4@SiO2@poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres with well‐defined core–shell–shell structure were facilely synthesized and applied to selectively enrich glycopeptides. Due to the relatively large amount of vinyl groups introduced by 3‐methacryloxy‐propyl‐trimethoxysilane on the core‐shell surface, the poly(styrene‐co‐4‐vinylbenzeneboronic acid) (PSV) was coated with high efficiency, resulting in a large amount of boronic acid on the outermost polymer shell of the Fe3O4@SiO2@PSV microspheres, which is of great importance to improve the enrichment efficiency for glycopeptides. The obtained Fe3O4@SiO2@PSV microspheres were successfully applied to the enrichment of glycopeptides with strong specificity and high selectivity, evaluated by capturing glycopeptides from tryptic digestion of model glycoprotein HRP diluted to 0.05 ng/μL (1.25 × 10?13 mol, 100 μL), tryptic digest of HRP and nonglycosylated BSA up to the ratio of 1:120 w/w and the real complex sample human serum with 103 unique N‐glycosylation peptides of 46 different glycoproteins enriched.  相似文献   

18.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Despite great progress in aluminum ion batteries (AIBs), the commercialization and performance improvement of AIBs‐based carbon cathodes is greatly impeded by sluggish intercalation/extraction and redox kinetics due to large‐sized AlCl4? anions. Phosphates with tunnel channels and much larger d‐spacing than the radius of Al3+ could be an alternative candidate as a cathode for potential high‐performance AIBs. Herein, elaborately designed porous tunnel structured Co3(PO4)2@C composites derived from ZIF‐67 as AIBs cathodes are demonstrated, showing increased active sites, high ionic mobility, and high Al3+ ion diffusion coefficient, leading to remarkably enhanced discharge–charge redox reaction kinetics. Furthermore, the carbon shell and porous structure performs as armor to alleviate volume change and maintain the structure integrity of the cathodes. As expected, the rationally constructed Co3(PO4)2@C composite exhibits a superior capacity of 111 mA h g?1 at a high current density of 6 A g?1 and 151 mA h g?1 at 2 A g?1 after 500 cycles with capacity decay of 0.02% per cycle. This innovative strategy could be a big step forward for long‐term cycle stable AIBs and reveals significant insights into the redox reaction mechanism for high‐performance AIBs based on Al3+ rather than large‐sized AlCl4?.  相似文献   

20.
Bifunctional cobalt oxide (Co3O4) nanowire catalysts grown on carbon cloth (CC) fibers and their modification with nickel oxide (NiO) and manganese dioxide (MnO2) to produce core–shell nanoarchitectures are explored as catalysts for urea oxidation reaction and oxygen reduction reaction in direct urea fuel cells (DUFC). Based on a systematic electrochemical characterization of the catalyst, the as‐developed core–shell nanoarchitectures are optimized toward DUFC performance. Under alkaline conditions with an anion exchange membrane, the DUFC with a cell configuration of Co3O4@NiO(1:2)/CC(a|c)Co3O4@MnO2(1:2)/CC exhibits a maximum power density of 33.8 mW cm?2 with excellent durability for 120 h without any performance loss. Furthermore, the DUFC exhibits a maximum power density of 23.2 mW cm?2 with human urine as a fuel. These findings offer an approach to convert human waste into treasure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号