首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

2.
Abstract: The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

3.
4.
Lammel S  Ion DI  Roeper J  Malenka RC 《Neuron》2011,70(5):855-862
Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli.  相似文献   

5.
In a previous study it was shown that nitroprusside-induced hypotension strongly enhances the release of dopamine (DA) in the prefrontal cortex (PFC). In the present study we have further investigated the mechanism involved in this effect. Glutamate receptor antagonists were infused into the ventral tegmental area (VTA) or PFC, while DA release was measured in the ipsilateral PFC and hypotension was applied by intravenous infusion of nitroprusside. Infusion into the VTA of neither a NMDA receptor antagonist (CPP), nor a non-NMDA antagonist (DNQX) affected the hypotension-induced increase of DA in the PFC. Intracortical infusion of CPP also failed to affect significantly, whereas local infusion of DNQX inhibited the hypotension-enhanced release of DA dose-dependently. The stimulation of DA release was relatively small in the VTA as well as in the nucleus accumbens when compared with the response in the PFC. It is concluded that DA released from mesocortical neurons can be modulated by two different mechanisms: first, by glutamate afferents to the VTA that modify the nerve-impulse flow of DA neurons; and, second, by glutamate afferents to the PFC that act at the level of the DA nerve terminals. The behaviour context (arousal or stress versus hypotension) determines which type of interaction predominates.  相似文献   

6.
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.  相似文献   

7.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

8.
Abstract: The role of excitatory amino acid (EAA) receptors located in the ventral tegmental area (VTA) in tonic and phasic regulation of dopamine release in the ventral striatum was investigated. Microdialysis in conscious rats was used to assess dopamine release primarily from the nucleus accumbens shell region of the ventral striatum while applying EAA antagonists or agonists to the VTA. Infusion of the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (25 and 100 µ M ) into the VTA did not affect dopamine release in the ventral striatum. In contrast, intra-VTA infusion of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (100 and 500 µ M ) dose-dependently decreased the striatal release of dopamine. Intra-VTA application of the ionotropic EAA receptor agonists NMDA and AMPA dose-dependently (10 and 100 µ M ) increased dopamine efflux in the ventral striatum. However, infusion of 50 or 500 µ M trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), a metabotropic EAA receptor agonist, did not significantly affect these levels. These data suggest that NMDA receptors in the VTA exert a tonic excitatory influence on dopamine release in the ventral striatum. Furthermore, dopamine neurotransmission in this region may be enhanced by activation of NMDA and AMPA receptors, but not ACPD-sensitive metabotropic receptors, located in the VTA. These data further suggest that EAA regulation of dopamine release primarily occurs in the VTA as opposed to presynaptically at the terminal level.  相似文献   

9.
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc.  相似文献   

10.
Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high-frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior.  相似文献   

11.
In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs) coexpress D1 and D2 receptors (D1R and D2R) along with the neuropeptides dynorphin (DYN) and enkephalin (ENK). These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc), ventral tegmental area (VTA), caudate putamen and substantia nigra (SN). Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.  相似文献   

12.
Liang J  Ma SS  Li YJ  Ping XJ  Hu L  Cui CL 《Neurochemical research》2012,37(7):1482-1489
Our previous study demonstrated that morphine dose- and time-dependently elevated dopamine (DA) concentrations in the nucleus accumbens (NAc) during the expression of morphine-induced conditioned place preference (CPP) in rats. However, still unknown are how DA concentrations dynamically change during the morphine-induced CPP test and whether tyrosine hydroxylase (TH) activity in the ventral tegmental area (VTA) plays a vital role in this process. In the present study, we measured dynamic changes in TH and phosphorylated TH serine 40 (pTH Ser(40)) and pTH Ser(31) proteins in the VTA, and DA concentrations in the NAc at 5 min intervals during a 30 min morphine-induced CPP test. Rats that underwent morphine-induced CPP training significantly preferred the morphine-paired chamber during the CPP expression test, an effect that lasted at least 30 min in the drug-free state. DA concentrations in the NAc markedly increased at 15 min when the rats were returned to the CPP boxes to assess the expression of preference for the previously drug-paired chamber. DA concentrations then declined 2 h after the CPP test. TH and pTH Ser(40) levels, but not pTH Ser(31) levels, in the VTA were enhanced during the CPP test. These results indicated that TH and the phosphorylation of TH Ser(40) in the VTA may be responsible for DA synthesis and release in the NAc during the behavioral expression of conditioned reward elicited by a drug-associated context.  相似文献   

13.
The serotonin 5-HT(2C) receptor (5-HT(2C)R) is localized to the limbic-corticostriatal circuit, which plays an integral role in mediating attention, motivation, cognition, and reward processes. The 5-HT(2C)R is linked to modulation of mesoaccumbens dopamine neurotransmission via an activation of γ-aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA). However, we recently demonstrated the expression of the 5-HT(2C)R within dopamine VTA neurons suggesting the possibility of a direct influence of the 5-HT(2C)R upon mesoaccumbens dopamine output. Here, we employed double-label fluorescence immunochemistry with the synthetic enzymes for dopamine (tyrosine hydroxylase; TH) and GABA (glutamic acid decarboxylase isoform 67; GAD-67) and retrograde tract tracing with FluoroGold (FG) to uncover whether dopamine and GABA VTA neurons that possess 5-HT(2C)R innervate the nucleus accumbens (NAc). The highest numbers of FG-labeled cells were detected in the middle versus rostral and caudal levels of the VTA, and included a subset of TH- and GAD-67 immunoreactive cells, of which >50% also contained 5-HT(2C)R immunoreactivity. Thus, we demonstrate for the first time that the 5-HT(2C)R colocalizes in DA and GABA VTA neurons which project to the NAc, describe in detail the distribution of NAc-projecting GABA VTA neurons, and identify the colocalization of TH and GAD-67 in the same NAc-projecting VTA neurons. These data suggest that the 5-HT(2C)R may exert direct influence upon both dopamine and GABA VTA output to the NAc. Further, the indication that a proportion of NAc-projecting VTA neurons synthesize and potentially release both dopamine and GABA adds intriguing complexity to the framework of the VTA and its postulated neuroanatomical roles.  相似文献   

14.

Background

The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.

Methodology/Principal Findings

We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA''s effects in an active network.

Conclusions/Significance

Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.  相似文献   

15.
The objectives of the present study were to examine the involvement of GABA and cholinergic receptors within the nucleus accumbens (ACB) on feedback regulation of somatodendritic dopamine (DA) release in the ventral tegmental area (VTA). Adult male Wistar rats were implanted with ipsilateral dual guide cannulae for in vivo microdialysis studies. Activation of the feedback system was accomplished by perfusion of the ACB with the DA uptake inhibitor GBR 12909 (GBR; 100 microm). To assess the involvement of GABA and cholinergic receptors in regulating this feedback system, antagonists (100 microm) for GABAA (bicuculline, BIC), GABAB (phaclofen, PHAC), muscarinic (scopolamine, SCOP), and nicotinic (mecamylamine, MEC) receptors were perfused through the probe in the ACB while measuring extracellular DA levels in the ACB and VTA. Local perfusion of the ACB with GBR significantly increased (500% of baseline) the extracellular levels of DA in the ACB and produced a concomitant decrease (50% of baseline) in the extracellular DA levels in the VTA. Perfusion of the ACB with BIC or PHAC alone produced a 200-400% increase in the extracellular levels of DA in the ACB but neither antagonist altered the levels of DA in the VTA. Co-perfusion of either GABA receptor antagonist with GBR further increased the extracellular levels of DA in the ACB to 700-800% of baseline. However, coperfusion with BIC completely prevented the reduction in the extracellular levels of DA in the VTA produced by GBR alone, whereas PHAC partially prevented the reduction. Local perfusion of the ACB with either MEC or SCOP alone had little effect on the extracellular levels of DA in the ACB or VTA. Co-perfusion of either cholinergic receptor antagonist with GBR markedly reduced the extracellular levels of DA in the ACB and prevented the effects of GBR on reducing DA levels in the VTA. Overall, the results of this study suggest that terminal DA release in the ACB is under tonic GABA inhibition mediated by GABAA (and possibly GABAB) receptors, and tonic cholinergic excitation mediated by both muscarinic and nicotinic receptors. Activation of GABAA (and possibly GABAB) receptors within the ACB may be involved in the feedback inhibition of VTA DA neurons. Cholinergic interneurons may influence the negative feedback system by regulating terminal DA release within the ACB.  相似文献   

16.
Rowell PP  Volk KA 《Neuro-Signals》2004,13(3):114-121
Dopaminergic mesolimbic neurons, with cell bodies in the ventral tegmental area (VTA) projecting to the nucleus accumbens (NAc), have been shown to be involved in the development of drug dependence. The application of nicotine to either the VTA or NAc produces an increase in dopamine release; however, the positive reinforcement produced by the systemic injection of nicotine is primarily due to stimulation of nicotinic acetylcholine receptors (nAChRs) in the VTA. Because the brain levels of nicotine would likely be the same in both brain areas, the nAChRs in the NAc may be less sensitive than those in the VTA. This study was undertaken to make a direct comparison of the native nAChRs in intact slices of NAc and VTA by measuring nicotine-stimulated efflux of (86)Rb(+) in a superfusion assay. The potency of nicotine and several other agonists was similar in both brain areas, but nicotine was somewhat more efficacious in the NAc. The effects of treatment duration, calcium and nicotinic antagonists were also determined. The results suggest that the predominant effect of nicotine in the VTA following systemic administration is due to differences in neuronal circuitry or firing patterns rather than inherent differences in the two nAChR populations.  相似文献   

17.
Chronic exposure to psychostimulants induces neuro-adaptations in ion channel function of dopamine (DA)-innervated cells localized within the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc). Although neuroplasticity in ion channel function is initially found in drug-sensitized animals, it has recently been believed to underlie the withdrawal effects of cocaine, including craving that leads to relapse in human addicts. Recent studies have also revealed remarkable differences in altered ion channel activities between mPFC pyramidal neurons and medium spiny NAc neurons in cocaine-withdrawn animals. In response to psychostimulant or certain “excitatory” stimuli, increased intrinsic excitability is found in mPFC pyramidal neurons, whereas decreased excitability is observed in medium spiny NAc cells in drug-withdrawn animals compared to drug-free control animals. These changes in ion channel function are modulated by interrupted DA/Ca2+ signaling with decreased DA D2 receptor function but increased D1 receptor signaling. More importantly, they are correlated to behavioral changes in cocaine-withdrawn human addicts and sensitized animals. Based on growing evidence, researchers have proposed that cocaine-induced neuro-adaptations in ion channel activity and DA/Ca2+ signaling in mPFC pyramidal neurons and medium spiny NAc cells may be the fundamental cellular mechanism underlying the cocaine withdrawal effects observed in human addicts.  相似文献   

18.
The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 microM) infusion, as well as AMPA (50 microM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.  相似文献   

19.
The role of dopamine in the nucleus accumbens in analgesia   总被引:7,自引:0,他引:7  
Altier N  Stewart J 《Life sciences》1999,65(22):2269-2287
Opioid and psychostimulant drugs have long been used for the relief of chronic pain in the clinical situation. Animal studies confirm that these drugs alleviate persistent or tonic pain. Little is known, however, about the neural systems underlying the suppression of tonic pain except that they are different from those mediating the suppression of phasic (i.e., sharp and short-lasting) pain. Although spinal and brainstem-descending pain suppression mechanisms play a role in mediating the inhibition of tonic pain, it appears that this response is additionally mediated by the activation of mechanisms lying rostral to the brainstem. Recent studies suggest that the activation of mesolimbic dopamine (DA) neurons, arising from the cell bodies of the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAcc), plays an important role in mediating the suppression of tonic pain. Other studies suggest that this pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, through the endogenous release of opioids and substance P (SP) in the midbrain.  相似文献   

20.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号