首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

2.
Abstract: The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

3.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

4.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

5.
In a previous study it was shown that nitroprusside-induced hypotension strongly enhances the release of dopamine (DA) in the prefrontal cortex (PFC). In the present study we have further investigated the mechanism involved in this effect. Glutamate receptor antagonists were infused into the ventral tegmental area (VTA) or PFC, while DA release was measured in the ipsilateral PFC and hypotension was applied by intravenous infusion of nitroprusside. Infusion into the VTA of neither a NMDA receptor antagonist (CPP), nor a non-NMDA antagonist (DNQX) affected the hypotension-induced increase of DA in the PFC. Intracortical infusion of CPP also failed to affect significantly, whereas local infusion of DNQX inhibited the hypotension-enhanced release of DA dose-dependently. The stimulation of DA release was relatively small in the VTA as well as in the nucleus accumbens when compared with the response in the PFC. It is concluded that DA released from mesocortical neurons can be modulated by two different mechanisms: first, by glutamate afferents to the VTA that modify the nerve-impulse flow of DA neurons; and, second, by glutamate afferents to the PFC that act at the level of the DA nerve terminals. The behaviour context (arousal or stress versus hypotension) determines which type of interaction predominates.  相似文献   

6.
Summary We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, usingin vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-a-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DAsynthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DArelease. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

7.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

8.
The objective of this study was to examine the role of dopamine (DA) receptors in the nucleus accumbens (ACB) in controlling feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats using ipsilateral dual-probe in vivo microdialysis. Perfusion of the ACB for 60 min with the DA uptake inhibitor GBR-12909 (10-1,000 microM) or nomifensine (10-1,000 microM) dose-dependently increased the extracellular levels of DA in ACB and concomitantly reduced the extracellular levels of DA in the VTA. Coperfusion of 100 microM nomifensine with either 100 microM SCH-23390 (SCH), a D1 antagonist, or 100 microM sulpiride (SUL), a D2 receptor antagonist, produced either an additive (for SCH) or a synergistic (for SUL) elevation in the extracellular levels of DA in the ACB, whereas the reduction in the extracellular levels of DA in the VTA produced by nomifensine alone was completely prevented by addition of either antagonist. Application of 100 microM SCH or SUL alone through the microdialysis probe in the ACB increased the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA remained unchanged. Overall, the results suggest that (a) increasing the synaptic levels of DA in the ACB activates a long-loop negative feedback pathway to the VTA involving both D1 and D2 postsynaptic receptors and (b) terminal DA release within the ACB is regulated directly by D2 autoreceptors and may be indirectly regulated by D1 receptors, possibly on interneurons and/or through postsynaptic inhibition of the negative feedback loop.  相似文献   

9.
Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.Abbreviations Glu glutamate - DA dopamine - NMDA N-methyl-D-aspartate - CPP 3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid - AMPA -amino-3-hydroxy-5-metylisoxazole-4-propionic acid - APV aminophosphonovaleric acid - DOPAC dihydroxyphenylacetic acid - HVA homovanillic acid - DARPP 32 dopamine-cAMP-regulated phosphoprotein 32 - CSF cerebrospinal fluid Laboratory associated with the University of Aix-Marseille II  相似文献   

10.
Long-term potentiation of excitatory inputs to brain reward areas by nicotine   总被引:34,自引:0,他引:34  
Mansvelder HD  McGehee DS 《Neuron》2000,27(2):349-357
Nicotine reinforces smoking behavior by activating nicotinic acetylcholine receptors (nAChRs) in the midbrain dopaminergic (DA) reward centers, including the ventral tegmental area (VTA). Although nicotine induces prolonged excitation of the VTA in vivo, the nAChRs on the DA neurons desensitize in seconds. Here, we show that activation of nAChRs on presynaptic terminals in the VTA enhances glutamatergic inputs to DA neurons. Under conditions where the released glutamate can activate NMDA receptors, long-term potentiation (LTP) of the excitatory inputs is induced. Both the short- and the long-term effects of nicotine required activation of presynaptic alpha7 subunit-containing nAChRs. These results can explain the long-term excitation of brain reward areas induced by a brief nicotine exposure. They also show that nicotine alters synaptic function through mechanisms that are linked to learning and memory.  相似文献   

11.
Abstract: The role of excitatory amino acid (EAA) receptors located in the ventral tegmental area (VTA) in tonic and phasic regulation of dopamine release in the ventral striatum was investigated. Microdialysis in conscious rats was used to assess dopamine release primarily from the nucleus accumbens shell region of the ventral striatum while applying EAA antagonists or agonists to the VTA. Infusion of the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (25 and 100 µ M ) into the VTA did not affect dopamine release in the ventral striatum. In contrast, intra-VTA infusion of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (100 and 500 µ M ) dose-dependently decreased the striatal release of dopamine. Intra-VTA application of the ionotropic EAA receptor agonists NMDA and AMPA dose-dependently (10 and 100 µ M ) increased dopamine efflux in the ventral striatum. However, infusion of 50 or 500 µ M trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), a metabotropic EAA receptor agonist, did not significantly affect these levels. These data suggest that NMDA receptors in the VTA exert a tonic excitatory influence on dopamine release in the ventral striatum. Furthermore, dopamine neurotransmission in this region may be enhanced by activation of NMDA and AMPA receptors, but not ACPD-sensitive metabotropic receptors, located in the VTA. These data further suggest that EAA regulation of dopamine release primarily occurs in the VTA as opposed to presynaptically at the terminal level.  相似文献   

12.
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.  相似文献   

13.
Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebellar astrocytes, and corresponding cocultures. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). The results indicate that the release in response to AMPA (30 microM) in the presence of cyclothiazide (50 microM) to block desensitization, was of a vesicular origin. Pulses of 55 mM K+ caused a DL-TBOA resistant efflux of preloaded D-[3H]aspartate from astrocytes, indicating that this release was not mediated by glutamate transporters. The results furthermore support the notion of an important function of the astrocytes in the uptake of released glutamate, because DL-TBOA caused a large, apparent increase in the depolarization-coupled release of preloaded D-[3H]aspartate in the cocultures, compared to neuronal monocultures.  相似文献   

14.
The objective of the present study was to examine the effects of perfusion of dopamine (DA) D1- and D2-like receptor agonists in the nucleus accumbens (ACB) on the long-loop negative feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats employing ipsilateral dual probe in vivo microdialysis. Perfusion of the ACB for 60 min with the D1-like receptor agonist SKF 38393 (SKF, 1-100 microM) dose-dependently reduced the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA were not changed. Similarly, application of the D2-like receptor agonist quinpirole (Quin, 1-100 microM) through the microdialysis probe in the ACB reduced the extracellular levels of DA in the ACB in a concentration-dependent manner, whereas extracellular levels of DA in the VTA were not altered. Co-application of SKF (100 microM) and Quin (100 microM) produced concomitant reductions in the extracellular levels of DA in the ACB and VTA. The reduction in extracellular levels of DA in the ACB and VTA produced by co-infusion of SKF and Quin was reversed in the presence of either 100 microM SCH 23390 (D1-like antagonist) or 100 microM sulpiride (D2-like antagonist). Overall, the results suggest that (a) activation of dopamine D1- or D2-like receptors can independently regulate local terminal DA release in the ACB, whereas stimulation of both subtypes is required for activation of the negative feedback pathway to the VTA.  相似文献   

15.
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.  相似文献   

16.
Glutamate is recognized as a prominent excitatory transmitter in the supraoptic nucleus (SON) and is involved in transmission of osmoregulatory information from the osmoreceptors to the vasopressin (VP) and oxytocin (OT) neurons. Explants of the hypothalamo-neurohypophysial system were utilized to characterize the roles of the non-N-methyl-D-aspartate (NMDA) glutamate receptor subtypes (non-NMDA-Rs), kainic acid receptors (KA-Rs), and aminopropionic acid receptors (AMPA-Rs) and to evaluate the interdependence of NMDA-Rs and non-NMDA-Rs in eliciting hormone release. Although both KA and AMPA increased hormone release, a specific agonist of the KA-Rs, SYM-2081, was not effective. This combined with the finding that cyclothiazide, an agent that inhibits the desensitization of AMPA-Rs, increased the VP response to both KA and AMPA indicates that the increase in hormone release induced by the non-NMDA agonists is mediated via AMPA-Rs, rather than KA-Rs. Inhibition of osmotically stimulated VP and OT release by a specific AMPA-R antagonist indicated that AMPA-Rs are essential for mediating osmotically stimulated hormone release. NMDA-stimulated VP but not OT release was prevented by blockade of non-NMDA-Rs, but AMPA-stimulated VP/OT release was not prevented by NMDA-R blockade.  相似文献   

17.
We have identified colorectal distension (CRD)-responsive neurons in the anterior cingulate cortex (ACC) and demonstrated that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization. In the present study, we confirmed that rostral ACC neurons of sensitized rats [induced by chicken egg albumin (EA)] exhibit enhanced spike responses to CRD. Simultaneous in vivo recording and reverse microdialysis of single ACC neurons showed that a low dose of glutamate (50 microM) did not change basal ACC neuronal firing in normal rats but increased ACC neuronal firing in EA rats from 18 +/- 2 to 32 +/- 3.8 impulses/10 s. A high dose of glutamate (500 microM) produced 1.95-fold and a 4.27-fold increases of ACC neuronal firing in sham-treated rats and in EA rats, respectively, suggesting enhanced glutamatergic transmission in the ACC neurons of EA rats. Reverse microdialysis of the 3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainite receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) reduced basal and abolished CRD-induced ACC neuronal firing in normal rats. In contrast, microdialysis of N-methyl-d-aspartate (NMDA) receptor antagonist AP5 had no effect on ACC neuronal firing in normal rats. However, AP5 produced 86% inhibition of ACC neuronal firing evoked by 50 mmHg CRD in the EA rats. In conclusion, ACC nociceptive transmissions are mediated by glutamate AMPA receptors in the control rats. ACC responses to CRD are enhanced in viscerally hypersensitive rats. The enhancement of excitatory glutamatergic transmission in the ACC appears to mediate this response. Furthermore, NMDA receptors mediate ACC synaptic responses after the induction of visceral hypersensitivity.  相似文献   

18.
A contribution of necrosis and apoptotis as well as the particular apoptosis pathways in neuro-degeneration induced by glutamate and selective glutamate receptor agonists, NMDA and kainate, were studied. In experiments on primary neuron cultures of 7 days in vitro from embryonic rat cortex, the necrosis and apoptosis were recognized using vital fluorescence acridine orange and ethidium bromide staining. Immunostaining was used to visualize apoptotic peptides such as P53, Cas-3 and AIF. Death of neurons occurred by both necrosis and apoptosis following 240 min 3 mM glutamate, 30 microM NMDA and 30 microM kainate exposure. Quantities of necrotic neurons in the presence of NMDA and kainate were substantially reduced when compared to the glutamate action. The glutamate effects were realized through predominant activation of AMPA- and kainate receptors, since it could be greatly suppressed by 30 microM CNQX. AIF but not Cas-3, was found in a large amount of neurons when apoptosis was evoked by the selective NMDA receptor activation. On the contrary, during apoptosis induced by glutamate and kainate, many cells contained Cas-3 in nuclei rather than the AIF. The data suggest that apoptosis induced by the NMDA receptor activation develops through the caspase-3-independent pathway that involves direct AIF accumulation in nuclei. The AMPA/kainate receptor mediated apoptosis includes the caspase-3-dependent mechanism.  相似文献   

19.
20.
Abstract: In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band (MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral microdialysis. Perfusion with N -methyl- d -aspartate (NMDA) and ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the MS/vDB caused an increase in ACh output in the hippocampus. This increase was completely blocked by coadministration of their respective antagonists d (−)-2-amino-5-phosphonopentanoic acid ( d -AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Perfusion in the MS/vDB with kainic acid also caused an increase in ACh output, but coadministration of CNQX attenuated the increase only partially. Perfusion with d -AP5 or CNQX alone in the septal probe did not affect ACh output from the hippocampus. In contrast to the results of septal administration of NMDA and AMPA, local perfusion with the same drugs in the hippocampus caused a decrease in ACh output. Whereas the results of septal administration of drugs indicate that septal cholinergic neurons probably receive excitatory glutamatergic innervation, the decrease in ACh output caused by administration of NMDA and AMPA in the hippocampus is poorly understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号