首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death.  相似文献   

2.

Background  

The unique photonic properties of the recently developed fluorescent semiconductor nanocrystals (QDs) have made them a potential tool in biological research. However, QDs are not yet a part of routine laboratory techniques. Double and triple immunocytochemistries were performed in HeLa cell cultures with commercial CdSe QDs conjugated to antibodies. The optical characteristics, due to which QDs can be used as immunolabels, were evaluated in terms of emission spectra, photostability and specificity.  相似文献   

3.

Background  

Quantum dots (QDs) have been considered as a new and efficient probe for labeling cells non-invasively in vitro and in vivo, but fairly little is known about how QDs are eliminated from cells after labeling. The purpose of this study is to investigate the metabolism of QDs in different type of cells.  相似文献   

4.

Background  

Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs) are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable.  相似文献   

5.

Background  

Quantum dots (QDs) are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs).  相似文献   

6.

Background  

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs) offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture.  相似文献   

7.

Background

When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks.

Results

The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity.

Conclusions

This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.
  相似文献   

8.
9.
Biomedical applications of glyconanoparticles based on quantum dots   总被引:1,自引:0,他引:1  

Background

Quantum dots (QDs) are outstanding nanomaterials of great interest to life sciences. Their conjugation versatility added to unique optical properties, highlight these nanocrystals as very promising fluorescent probes. Among uncountable new nanosystems, in the last years, QDs conjugated to glycans or lectins have aroused a growing attention and their application as a tool to study biological and functional properties has increased.

Scope of review

This review describes the strategies, reported in the literature, to conjugate QDs to lectins or carbohydrates, providing valuable information for the elaboration, improvement, and application of these nanoconjugates. It also presents the main applications of these nanosystems in glycobiology, such as their potential to study microorganisms, the development of diseases such as cancer, as well as to develop biosensors.

Major conclusions

The development of glyconanoparticles based on QDs emerged in the last decade. Many works reporting the conjugation of QDs with carbohydrates and lectins have been published, using different strategies and reagents. These bioconjugates enabled studies that are very sensitive and specific, with potential to detect and elucidate the glycocode expressed in various normal or pathologic conditions.

General significance

Produce a quick reference source over the main advances reached in the glyconanotechnology using QDs as fluorescent probes.  相似文献   

10.

Background  

Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility.  相似文献   

11.

Background

Monolayer cell cultures have been considered the most suitable technique for in vivo cellular experiments. However, a lot of cellular functions and responses that are present in natural tissues are lost in two-dimensional cell cultures. In this context, nanoparticle accumulation data presented in literature are often not accurate enough to predict behavior of nanoparticles in vivo. Cellular spheroids show a higher degree of morphological and functional similarity to the tissues.

Methods

Accumulation and distribution of carboxylated CdSe/ZnS quantum dots (QDs), chosen as model nanoparticles, was investigated in cellular spheroids composed of different phenotype mammalian cells. The findings were compared with the results obtained in in vivo experiments with human tumor xenografts in immunodeficient mice. The diffusive transport model was used for theoretical nanoparticles distribution estimation.

Results

QDs were accumulated only in cells, which were localized in the periphery of cellular spheroids. CdSe/ZnS QDs were shown to be stable and inert; they did not have any side-effects for cellular spheroids formation. Penetration of QDs in both cellular spheroids and in vivo tumor model was limited. The mathematical model confirmed the experimental results: nanoparticles penetrated only 25 μm into cellular spheroids after 24 h of incubation.

Conclusions

Penetration of negatively charged nanoparticles is limited not only in tumor tissue, but also in cellular spheroids.

General Significance

The results presented in this paper show the superior applicability of cellular spheroids to cell monolayers in the studies of the antitumor effect and penetration of nanomedicines.  相似文献   

12.

Background  

The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs) distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery.  相似文献   

13.

Background  

Modulation of the immune system is one of the most plausible mechanisms underlying the beneficial effects of probiotic bacteria on human health. Presently, the specific probiotic cell products responsible for immunomodulation are largely unknown. In this study, the genetic and phenotypic diversity of strains of the Lactobacillus plantarum species were investigated to identify genes of L. plantarum with the potential to influence the amounts of cytokines interleukin 10 (IL-10) and IL-12 and the ratio of IL-10/IL-12 produced by peripheral blood mononuclear cells (PBMCs).  相似文献   

14.
The interactions between 2‐mercaptoethanol, dimercaprol and CdSe quantum dots (QDs) in organic media have been investigated by spectral methods. The results showed that the fluorescence (FL) emission of CdSe QDs gradually decreased, with a slight red‐shift, after adding thiols to CdSe QDs solutions. With the increase of the concentrations of thiols, the resonance light scattering (RLS) signal of CdSe QDs had been strongly enhanced in the wavelength range 300–500 nm, which was confirmed by the formation of larger CdSe QDs particles. The effect of thiols on the FL emission of CdSe QDs could be described by a Stern–Volmer‐type equation with the concentration ranges 1.0 × 10–6–7.5 × 10–4 mol/L for 2‐mercaptoethanol and 1.0 × 10–7–2.5 × 10–5 mol/L for dimercaprol. The possible mechanism of the interaction was proposed according to the results of UV‐vis absorption and micro‐Raman spectroscopy. The results indicated that FL quenching was mainly attributable to the exchange of the QDs surface molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Glibenclamide (GB), as a sulfonylurea‐based medication is commonly prescribed for the treatment of type 2 diabetes. Due to its increasing consumption, there is a need to develop a simple, fast, and reliable detection method to follow its concentration in pharmaceutical and biological samples. Herein, a novel fluorometric method is developed for the sensitive measurement of GB. The method is based on the enhancing effect of GB on the fluorescence emission of mercaptopropionic acid (MPA) capped cadmium telluride quantum dots (CdTe QDs). QDs were synthesized in aqueous solution and were characterized by fluorescence spectroscopy, transmission electron microscopy (TEM), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR). Fluorescence intensity of QDs was enhanced by adding GB in a very low concentration. The effect of operative factors such as pH, buffer, contact time and concentration of CdTe QDs were investigated and in the optimized condition, a linear increase was achieved for the emission intensity of QDs by increasing GB concentration in the range 49–345 ng mL?1, with a detection limit of 17.84 ng mL?1. The offered method has an acceptable precision (relative standard deviations were < 2.8%) and was satisfactorily applied for the determination of GB in pharmaceutical products and human urine samples.  相似文献   

16.
Water dispersible zinc sulfide quantum dots (ZnS QDs) with an average diameter of 2.9 nm were synthesized in an environment friendly method using chitosan as stabilizing agent. These nanocrystals displayed characteristic absorption and emission spectra having an absorbance edge at 300 nm and emission maxima (λ emission) at 427 nm. Citrate-capped silver nanoparticles (Ag NPs) of ca. 37-nm diameter were prepared by modified Turkevich process. The fluorescence of ZnS QDs was significantly quenched in presence of Ag NPs in a concentration-dependent manner with K sv value of 9 × 109 M−1. The quenching mechanism was analyzed using Stern–Volmer plot which indicated mixed nature of quenching. Static mechanism was evident from the formation of electrostatic complex between positively charged ZnS QDs and negatively charged Ag NPs as confirmed by absorbance study. Due to excellent overlap between ZnS QDs emission and surface plasmon resonance band of Ag NPs, the role of energy transfer process as an additional quenching mechanism was investigated by time-resolved fluorescence measurements. Time-correlated single-photon counting study demonstrated decrease in average lifetime of ZnS QDs fluorescence in presence of Ag NPs. The corresponding F?rster distance for the present QD–NP pair was calculated to be 18.4 nm.  相似文献   

17.

Aims/hypothesis

Patients treated with metformin exhibit low levels of plasma vitamin B12 (B12), and are considered at risk for developing B12 deficiency. In this study, we investigated the effect of metformin treatment on B12 uptake and distribution in rats.

Methods

Sprague Dawley rats (n = 18) were divided into two groups and given daily subcutaneous injections with metformin or saline (control) for three weeks. Following this, the animals received an oral dose of radio-labeled B12 (57[Co]-B12), and urine and feces were collected for 24 h. Plasma, bowel content, liver, and kidneys were collected and analyzed for B12, unsaturated B12-binding capacity, and 57[Co]-B12.

Results

Three weeks of metformin treatment reduced plasma B12 by 22% or 289 [47-383] pmol/L (median and [range]) (p = 0.001), while no effect was observed on unsaturated B12-binding capacity. Compared with controls, the amount of B12 in the liver was 36% (p = 0.007) higher in metformin-treated rats, while the B12 content in the kidney was 34% (p = 0.013) lower. No difference in the total amount of absorbed 57[Co]-B12 present in the tissues and organs studied was found, suggesting that metformin has no decreasing effect on the B12 absorption.

Conclusions/interpretation

These results show that metformin treatment increases liver accumulation of B12, thereby resulting in decreases in circulating B12 and kidney accumulation of the vitamin. Our data questions whether the low plasma B12 observed in patients treated with metformin reflects impaired B12 status, and rather suggests altered tissue distribution and metabolism of the vitamin.  相似文献   

18.
In this work, we report the synthesis, characterization and biological application of highly stable CdTe/ZnS (cadmium tellurite/zinc sulphide) Core/Shell (CS) quantum dots (QDs) capped with mercaptosuccinic acid (MSA). The CS QDs were synthesized using a simple one‐pot aqueous method. The synthesized CdTe/ZnS CS QDs were found to exhibit excellent stability even 100 days after preparation and also showed better photoluminescence quantum yield (PLQY) of about 50% compared with that of only CdTe QDs which was nearly 12%. The formation of the CdTe/ZnS CS was confirmed by high‐resolution transmission electron microscopy (HR‐TEM), and Fourier transform infra‐red (FTIR) and X‐ray diffraction (XRD) analyses. Further, on extending our study towards bioimaging of E. coli cells using the QDs samples, we found that CdTe/ZnS CS QDs showed better results compared with CdTe QDs.  相似文献   

19.

Background

The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs) as bactericidal agent on MB45.

Methods

Diluted Luria broth/Agar (10-3) media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs.

Results and conclusions

The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号