首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non‐linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11‐year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance‐tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.  相似文献   

2.
Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Abstract. The study of vegetation dynamics in tallgrass prairie in response to fire has focused on dormant season fire in late successional prairies. Our objective was to determine if late season fire of varying frequency results in divergent successional patterns in an early successional tallgrass prairie disturbed by grazing and cultivation. Specifically, we evaluated the influence of late‐summer fires of varying frequency on community composition and species richness. We collected vegetation and environmental data on two sites burned in the late growing‐season at varying frequencies. These communities differed in composition depending primarily on edaphic factors, time since the last burn, and year‐to‐year variation. We interpret the time effect as related to changes in species composition accompanying plant succession that followed disturbance either from cropping and heavy grazing on the loamy site or heavy grazing on the shallow site. Other unidentified factors also have a role in vegetation dynamics on this prairie. Community composition and species richness were not consistently responsive to frequency of growing‐season fires.  相似文献   

4.
《Aquatic Botany》2005,82(2):99-112
Responses of periphyton communities to different relevant durations of dry down were assessed. Long-hydroperiod sites within Everglades National Park remain wet for greater than 8 months of the year while short-hydroperiod mats are wet for fewer than 4 months of the year. Dry down duration of long and short-hydroperiod Everglades periphyton was manipulated from 0 to 1, 3, or 8 months after which periphyton was rewetted 1 month and examined for algal species composition. The effects of desiccation and rewetting on periphyton nutrient retention were also assessed. Relative abundance of diatoms declined from an average of 47% in the long-hydroperiod community at the start of the experiment to 24% after 1 month of desiccation and only 12% after 8 months of desiccation. Short-hydroperiod periphyton contained a lower proportion of diatoms at the outset (3%), which declined to less than 1% after the 8-month desiccation treatment. A significant increase in the filamentous cyanobacteria Schizothrix calcicola occurred in long-hydroperiod periphyton mats during this same period, but not in short-hydroperiod mats. Long-hydroperiod periphyton communities had a greater response to desiccation overall, but short-hydroperiod community structure responded to desiccation more rapidly. Because short-hydroperiod communities dry frequently, they appear to cope better to desiccating conditions than long-hydroperiod periphyton communities. This is indicated by the dominance of desiccation resistant algal taxa such as the cyanobacterial filaments S. calcicola and Scytonema hofmanni. Long-hydroperiod periphyton mat communities converge compositionally to short-hydroperiod periphyton communities after prolonged desiccation. Desiccation and rewetting caused long-hydroperiod periphyton to flux greater concentrations of nutrients than short-hydroperiod periphyton. Significant increases in efflux occurred from 1 to 8 months for total phosphorus (TP) and from 1 to 3 and 8 months for total nitrogen (TN) and total organic carbon (TOC). Thus, changes in periphyton mat community structure and function with altered hydroperiod may have long-term ecosystem effects.  相似文献   

5.
Current global models predict a hotter and drier climate in the southwestern United States with anticipated increases in drought frequency and severity coupled with changes in flash flood regimes. Such changes would likely have important ecological consequences, particularly for stream and riparian ecosystems already subject to frequent hydrologic disturbance. This study assessed the potential response of aquatic macroinvertebrates to interannual variation in hydrology in a spatially intermittent desert stream (Sycamore Creek, AZ). We compiled data on the recovery of macroinvertebrate communities following spring floods, with successional sequences captured 11 times over a 16‐year period (1983–1999). This period encompassed a transition from perennial to intermittent flow in this system, and included a record drought in 1989–1990. Results show that while the size of floods initiating sequences had little explanatory power, changes in macroinvertebrate community structure during postflood succession were closely associated with antecedent flooding and drought. Year‐to‐year differences in benthic communities integrated taxon‐specific responses to antecedent disturbance, including differential resistance to channel drying, use of hyporheic refugia, and variable rates of recovery once stream flow resumed. The long‐term consequences of drying on community structure were only evident during later stages of postflood succession, illustrating an interaction between flood and drought recovery processes in this system. Our observations highlight the potential for predicted climate changes in this region to have marked and long‐lasting consequences for benthic communities in desert streams.  相似文献   

6.
Natural moisture limitation during summer drought can constitute a stress for microbial communities in soil. Given globally predicted increases in drought frequency, there is an urgent need for a greater understanding of the effects of drought events on soil microbial processes. Using a long-term field-scale drought manipulation experiment at Clocaenog, Wales, UK, we analysed fungal community dynamics, using internal transcribed spacer-denaturing gradient gel electrophoresis (DGGE), over a 1-year period in the 6th year of drought manipulation. Ambient seasonality was found to be the dominant factor driving variation in fungal community dynamics. The summer drought manipulation resulted in a significant decline in the abundance of dominant fungal species, both independently of, and in interaction with, this seasonal variation. Furthermore, soil moisture was significantly correlated with the changes in fungal diversity over the drought manipulation period. While the relationship between species diversity and functional diversity remains equivocal, phenol oxidase activity was decreased by the summer drought conditions and there was a significant correlation with the decline of DGGE band richness among the most dominant fungal species during the drought season. Climatically driven events such as droughts may have significant implications for fungal community diversity and therefore, have the potential to interfere with crucial ecosystem processes, such as organic matter decomposition.  相似文献   

7.
The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and modifying the resilience of these systems.  相似文献   

8.
In forest systems, drought acts as a disturbance that can generate impacts on community structure and composition at multiple scales. This study focused on a 2-month drought event within an early successional forest system to determine the mechanism(s) of community response to, and recovery from, drought. Drought induced a 28% decline in neighborhood species richness and cover as a result of decreased colonization and increased extinction rates. Following drought, neighborhood richness quickly recovered via increased colonization rates while extinction rates were unaltered. Drought had little long-term effect on neighborhood structure (species richness and cover) and generated only subtle changes in neighborhood composition. Ruderal (annual and biennial) species were more likely to change (increase or decrease) in cover and frequency than the more stress tolerant perennial and woody species. However, population dynamics appeared to be generally driven by stochastic species turnover among fields and not by uniform shifts in species performance across the site. Although drought impacts and recovery appeared predictable at the neighborhood scale, population responses to drought within the site were rather unpredictable. Our findings suggest that stochastic fine-scale processes can generate predictable course-scale dynamics within a disturbed system. The scale-specific mechanisms of community change presented here should be explored in other systems to determine the extent of their generality in driving disturbance impacts on communities.  相似文献   

9.
Hydroperiod and nutrient status are known to influence aquatic communities in wetlands, but their joint effects are not well explored. I sampled floating periphyton mat and flocculent detritus (floc) infaunal communities using 6-cm diameter cores at short- and long-hydroperiod and constantly inundated sites across a range of phosphorus (P) availability (total phosphorus in soil, floc and periphyton). Differences in community structure between periphyton and floc microhabitats were greater than any variation attributable to hydroperiod, P availability, or other spatial factors. Multivariate analyses indicated community structure of benthic-floc infauna was driven by hydroperiod, although crowding (no. g−1 AFDM) of individual taxa showed no consistent responses to hydroperiod or P availability. In contrast, community structure of periphyton mat infauna was driven by P availability, while densities of mat infauna (no. m−2) were most influenced by hydroperiod (+correlations). Crowding of mat infauna increased significantly with P availability in short-hydroperiod marshes, but was constant across the P gradient in long-hydroperiod marshes. Increased abundance of floating-periphyton mat infauna with P availability at short-hydroperiod sites may result from a release from predation by small fish. Community structure and density were not different between long-hydroperiod and constantly inundated sites. These results have implications for the use of macroinvertebrates as indicators of water quality in wetlands and suggest the substrate sampled can influence interpretation of ecological responses observed in these communities.  相似文献   

10.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
The role of refugia for fishes during drought: a review and synthesis   总被引:9,自引:1,他引:8  
  • 1 Drought is a natural disturbance of aquatic ecosystems and can be a major factor in structuring aquatic communities. For individuals, populations and communities to persist in disturbed environments, they must have refuge from disturbance or disturbance must be minimal. Refugia convey spatial and temporal resistance or resilience in the face of disturbance, but the role of refugia in aquatic systems remains poorly understood. 2. We review available literature on aquatic refugia for fishes in order to synthesise current knowledge and provide suggestions for needed research. Our objectives were to clarify definitions of disturbance and refugia in the context of drought in aquatic systems, review how refuge habitats influence fish community structure, and consider the potential impact of refugia on fish population and community dynamics during drought. 3. Droughts cause a decrease in surface area/volume and an increase in extremes of physical and chemical water quality parameters. These conditions are linked with biotic interactions that structure the community of fishes residing in low‐flow or dry season refugia by increasing mortality rates, decreasing birth rates and/or increasing migration rates. Many aquatic organisms seek refuge from disturbance and/or have adaptations (e.g. physiological tolerance) that provide refuge. 4. Drought in aquatic systems leads to shifts in refugia spacing and connectance at multiple spatial and temporal scales. Refuge size, disturbance intensity, and mobility of organisms is predicted to play a large role in population persistence. We expect that refuge habitats will experience net immigration during drying and net emigration after rewetting, with the opposite occurring in surrounding habitat patches. Population dynamics of fishes using refugia during drought are best modelled by modified source‐sink dynamics, but dynamics are likely to change with spatial scale.
  相似文献   

12.
We analyzed the effect of periodic drying in the Florida Everglades on spatiotemporal population genetic structure of eastern mosquitofish (Gambusia holbrooki). Severe periodic drying events force individuals from disparate sources to mix in dry season relatively deep-water refuges. In 1996 (a wet year) and 1999 (a dry year), we sampled mosquitofish at 20 dry-season refuges distributed in 3 water management regions and characterized genetic variation for 10 allozyme and 3 microsatellite loci. In 1996, most of the ecosystem did not dry, whereas in 1999, many of our sampling locations were isolated by expanses of dried marsh surface. In 1996, most spatial genetic variation was attributed to heterogeneity within regions. In 1999, spatial genetic variation within regions was not significant. In both years, a small but significant amount of variation (less than 1% of the total variation) was partitioned among regions. Variance was consistently greater than zero among long-hydroperiod sites within a region, but not among short-hydroperiod sites within a region, where hydroperiod was measured as time since last marsh surface dry-down forcing fishes into local refuges. In 1996, all sites were in Hardy-Weinberg equilibrium. In 1999, we observed fewer heterozygotes than expected for most loci and sites suggesting a Wahlund effect arising from fish leaving areas that dried and mixing in deep-water refuges.  相似文献   

13.
14.
1. Although the crucial point of disturbance experiments in streams is the extent to which they can simulate an actual spate, this aspect has been widely neglected in the design of such studies. Similarly, the influence of the specific hydrological disturbance regime of a stream on its benthic community has received much theoretical attention in recent years, but hypotheses have rarely been tested in the field. 2. Our field experiment compared the structure of the benthic invertebrate community in the prealpine River Necker in north-eastern Switzerland with predictions of the patch dynamics concept about the faunal composition of frequently disturbed streams. We also compared the resistance and resilience of the invertebrates between two sites in the River Necker. A similar substratum composition at both sites, but higher shear stress values both at baseflow and bankfull discharge at site 2, implied a higher disturbance frequency at the latter site. Five patches of stream bed of ≈ 9 m2 were disturbed by kicking and raking at each site, while five similar areas served as controls. From each plot, six Surber samples were taken: the first immediately after the disturbance, and the following five 1, 3, 6, 10 and 30 days later. 3. Resilience of the total benthic invertebrate fauna was high. The total number of individuals recovered to undisturbed densities within 30 days at site 1 and 6 days at site 2. Taxon richness recovered within 3 days. In accordance with theory, taxa with high recolonization rates made up a major percentage of the total number of individuals, especially in disturbed plots. However, this percentage was lower at site 2 in spite of the higher disturbance frequency at this site. Rhithrogena spp., Leuctra spp. and the Simuliidae recovered faster to undisturbed densities at site 2. In contrast, absolute recolonization rates of these taxa were higher at site 1, where total invertebrate densities were more than twice as high as at site 2. 4. Our results suggest that the time since the last disturbance should be considered as an important factor in studies of benthic invertebrate communities in prealpine rivers, because disturbances can alter the community structure. In frequently disturbed streams, very short sampling intervals may be needed to detect differences in taxon-specific colonization rates. The specific hydrological disturbance regime of such streams is also important, because even within-stream differences in the resilience of the benthic invertebrate community are possible.  相似文献   

15.
Summary A study was begun in 1976 to measure succession patterns following soil disturbance within a sagebrush community in northwestern Colorado. The principal hypothesis was that type of disturbance affects the direction of succession, resulting in different plant communities over time. Successional dynamics were studied through 1988. Four types of soil disturbance resulted in 3 early seral communities: one dominated by grasses, one by annuals, and one intermediate. The annual-dominated communities were opportunistic on these sites, lasting 3–5 years and not determining the direction in which succession proceeded following their replacement. Twelve years after disturbance, 3 communities (one grass-dominated, one shrub-dominated, and one intermediate) occupied the site, the characteristics of which were functions of type of initial soil disturbance. For the period of time covered by this study (12 years), degree of disturbance was found to affect the direction of succession, resulting in different plant communities over time. There were, however, successional characteristics toward the end of the study that suggest that over a longer time period, succession might progress to a single community regardless of type of disturbance.  相似文献   

16.
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as β diversity change through transient and equilibrium states.  相似文献   

17.
Summary The responses of different successional stages of a temperate intertidal algal community to disturbance were investigated with a field experiment. The experiment was conducted in a low intertidal boulder field in southern California. In this habitat, the top surfaces of boulders are covered with algae. The composition of the assemblage on any particular boulder depends on the length of time since it was last overturned by wave action. When a boulder is overturned, the algae on what was formerly the top surface, are killed in whole or part by a combination of sea urchin grazing, anoxia, light levels below compensation intensity, and mechanical damage caused by crushing or abrasion. The length of time that a boulder remains overturned and the local abundance of sea urchins determines the intensity of the disturbance. When the boulder is righted, recolonization begins either by vegetative regrowth of survivors and/or by spores from outside.Using a three-factorial design, this natural form of disturbance was experimentally mimicked and the responses of three different successional stages of the algal community monitored. Boulders in each successional category were overturned for periods of 17, 27 and 54 days in areas with and without sea urchins, then righted. Two aspects of community response to perturbation were evaluated. These were (1) the assemblage's ability to resist change and (2) its ability, if altered, to adjust to some semblance of its original state. The resistance of each assemblage and of its component species to change was measured by the percent decrease in algal cover and by the decline in percent similarity of the community to its original composition. The recovery rate of each assemblage and of the cover lost by each species during the first 35 days following a disturbance was measured by the rate of increase in percent similarity to the original composition and the percent reestablishment of lost cover.The experimental evidence demonstrates that the successional stages of the producer level of an intertidal algal community differ significantly in their responses to disturbance. Early successional communities suffer more damage from a given level of perturbation but recover more quickly than either middle or late successional communities. Damage to any particular assemblage of algae, irrespective of successional age, is more extensive and recovery slower, the longer the boulder is overturned and/or sea urchins are present. Several thresholds in these responses were also identified.Differences in community responses and non-linearities in these responses were attributable to the life history characteristics of the component species rather than emergent properties of the assemblage. These characteristics have evolved in response to a variety of recurrent natural disturbances. This interpretation is in agreement with recent critical reevaluations of the trends and mechanisms of successional change in natural communities.  相似文献   

18.
Schwilk  D.W.  Keeley  J.E.  Bond  W.J. 《Plant Ecology》1997,132(1):77-84
The intermediate disturbance hypothesis is a widely accepted generalization regarding patterns of species diversity, but may not hold true where fire is the disturbance. In the Mediterranean-climate shrublands of South Africa, called fynbos, fire is the most importance disturbance and a controlling factor in community dynamics. The intermediate disturbance hypothesis states that diversity will be highest at sites that have had an intermediate frequency of disturbance and will be lower at sites that have experienced very high or very low disturbance frequencies. Measures of diversity are sensitive to scale; therefore, we compared species richness for three fire regimes in South African mountain fynbos to test the intermediate disturbance hypothesis over different spatial scales from 1 m2 to 0.1 hectares. Species diversity response to fire frequency was highly scale-dependent, but the relationship between species diversity and disturbance frequency was opposite that predicted by the intermediate disturbance hypothesis. At the largest spatial scales, species diversity was highest at the least frequently burned sites (40 years between fires) and lowest at the sites of moderate (15 to 26 years between fires) and high fire frequency (alternating four and six year fire cycle). Community heterogeneity, measured both as the slope of the species-area curve for a site and as the mean dissimilarity in species composition among subplots within a site, correlated with species diversity at the largest spatial scales. Community heterogeneity was highest at the least frequently burned sites and lowest at the sites that experienced an intermediate fire frequency.  相似文献   

19.
The Comprehensive Everglades Restoration Plan aims to make considerable changes to the quantity, quality, and timing of freshwater delivery to the southeastern saline Everglades (SESE), a mangrove ecosystem located between the freshwater Everglades and downstream estuarine embayments. Whereas fishes inhabiting seasonally-inundated areas of the SESE and the shorelines of downstream embayments have been examined, those utilizing the creeks connecting these ecotones have not. To evaluate the functional role of the creek habitat and the possible impact of future hydrologic changes on the fishes inhabiting them, 228 underwater visual surveys were performed at three locations of the SESE over a three-year period. Fish abundance data was related to structural habitat, water level, and salinity over various time periods. The SESE contains taxa from both the freshwater Everglades and downstream embayments, but does not appear to function as a nursery for most fishery taxa. Abiotic variability and fish diversity increased with distance from major freshwater sources. Though there were significant differences in the physical structure of mangrove trees among locations, few meaningful correlations between these parameters and the density of individual fish taxa were found. Small prey-base fishes (<10 cm TL) utilize the expansive ephemeral wetlands (i.e., upper mangle) during wet periods, and were concentrated into deeper creeks when these wetlands became dry. Densities of these fishes increase on the upper mangle with increased flooding (hydroperiod), and we observed greater densities of larger species in the creeks when hydroperiods exceeded 240 days. Based on these results, we recommend that water management create water releases which result in a wet period of ca. 240 days, followed by a gradual dry period lasting ca. 90 days.  相似文献   

20.
The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late‐successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late‐successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late‐successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号