首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.  相似文献   

2.
M Simon  L Giot    G Faye 《The EMBO journal》1991,10(8):2165-2170
In Saccharomyces cerevisiae, DNA polymerase delta (POLIII), the product of the CDC2 (POL3) gene, possesses, in its N-terminal half, the well conserved 3-domain 3' to 5' exonuclease site. Strains selectively mutagenized in this site display a mutator phenotype detected as a drastically increased spontaneous forward mutation rate to canavanine resistance or as an elevated reversion rate to lysine prototrophy. Assays on a partially purified extract of the mutant giving the largest mutator effect indicate that the 3' to 5' exonuclease activity is reduced below the detection limit whereas the DNA polymerizing activity has wild-type level. Therefore, our results provide experimental support for the hypothesis that the exonucleolytic proofreading activity associated with DNA polymerase delta resides on the DNA polymerase delta subunit and enhances the fidelity of DNA replication in yeast.  相似文献   

3.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

4.
DNA polymerase delta (pol delta) is a high fidelity eukaryotic enzyme that participates in DNA repair and is essential for DNA replication. Toward the goal of dissecting its multiple biological functions, here we describe the biochemical properties of Saccharomyces cerevisiae pol delta with a methionine replacing conserved leucine 612 at the polymerase active site. Compared with wild type pol delta, L612M pol delta has normal processivity and slightly higher polymerase specific activity. L612M pol delta also has normal 3' exonuclease activity, yet it is impaired in partitioning mismatches to the exonuclease active site, thereby reducing DNA synthesis fidelity. Error rates in vitro for L612M pol delta are elevated for both base substitutions and single base deletions but in a highly biased manner. For each of the six possible pairs of reciprocal mismatches that could arise during replication of complementary DNA strands to account for any particular base substitution in vivo (e.g. T-dGMP or A-dCMP for T to C transitions), L612M pol delta error rates are substantially higher for one mismatch than the other. These results provide a biochemical explanation for our observation, which confirms earlier genetic studies, that a haploid pol3-L612M S. cerevisiae strain has an elevated spontaneous mutation rate that is likely due to reduced replication fidelity in vivo.  相似文献   

5.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Exonucleolytic editing is a major contributor to the fidelity of DNA replication by the multisubunit DNA polymerase (pol) III holoenzyme. To investigate the source of editing specificity, we have studied the isolated exonuclease subunit, epsilon, and the pol III core subassembly, which carries the epsilon, theta, and alpha (polymerase) subunits. Using oligonucleotides with specific terminal mismatches, we have found that both epsilon and pol III core preferentially excise a mispaired 3' terminus and therefore have intrinsic editing specificity. For both epsilon and pol III core, exonuclease activity is much more effective with single-strand DNA; with a double-strand DNA, the exonuclease is strongly temperature-dependent. We conclude that the epsilon subunit of pol III holoenzyme is itself a specific editing exonuclease and that the source of specificity is the greater melting capacity of a mispaired 3' terminus.  相似文献   

7.
In Saccharomyces cerevisiae, POL3 encodes the catalytic subunit of DNA polymerase delta. While yeast POL3 mutant strains that lack the proofreading exonuclease activity of the polymerase have a strong mutator phenotype, little is known regarding the role of other Pol3p domains in mutation avoidance. We identified a number of pol3 mutations in regions outside of the exonuclease domain that have a mutator phenotype, substantially elevating the frequency of deletions. These deletions appear to reflect an increased frequency of DNA polymerase slippage. In addition, we demonstrate that reduction in the level of wild-type DNA polymerase results in a similar mutator phenotype. Lowered levels of DNA polymerase also result in increased sensitivity to the DNA-damaging agent methyl methane sulfonate. We conclude that both the quantity and the quality of DNA polymerase delta is important in ensuring genome stability.  相似文献   

8.
Kirchner JM  Tran H  Resnick MA 《Genetics》2000,155(4):1623-1632
The DNA polymerases delta and epsilon are the major replicative polymerases in the yeast Saccharomyces cerevisiae that possess 3' --> 5' exonuclease proofreading activity. Many errors arising during replication are corrected by these exonuclease activities. We have investigated the contributions of regions of Polepsilon other than the proofreading motifs to replication accuracy. An allele, pol2-C1089Y, was identified in a screen of Polepsilon mutants that in combination with an exonuclease I (exo1) mutation could cause a synergistic increase in mutations within homonucleotide runs. In contrast to other polymerase mutators, this allele specifically results in insertion frameshifts. When pol2-C1089Y was combined with deletions of EXO1 or RAD27 (homologue of human FEN1), mutation rates were increased for +1 frameshifts while there was almost no effect on -1 frameshifts. On the basis of genetic analysis, the pol2-C1089Y mutation did not cause a defect in proofreading. In combination with a deletion of the mismatch repair gene MSH2, the +1 frameshift mutation rate for a short homonucleotide run was increased nearly 100-fold whereas the -1 frameshift rate was unchanged. This suggests that the Pol2-C1089Y protein makes +1 frameshift errors during replication of homonucleotide runs and that these errors can be corrected by either mismatch repair (MMR) or proofreading (in short runs). This is the first report of a +1-specific mutator for homonucleotide runs in vivo. The pol2-C1089Y mutation defines a functionally important residue in Polepsilon.  相似文献   

9.
Procaryotic DNA polymerases contain an associated 3'----5' exonuclease activity which provides a proofreading function and contributes substantially to replication fidelity. DNA polymerases of the eucaryotic herpes-type viruses contain similar associated exonuclease activities. We have investigated the fidelity of polymerases purified from wild type herpes simplex virus, as well as from mutator and antimutator strains. On synthetic templates, the herpes enzymes show greater relative exonuclease activities, and greater ability to excise a terminal mismatched base, than procaryotic DNA polymerases which proofread. On a phi X174 natural DNA template, the herpes enzymes are more accurate than purified eucaryotic DNA polymerases; the error rate is similar to E. coli polymerase I. However, conditions which abnegate proofreading by E. coli polymerase I have little effect on the herpes enzymes. We conclude that either these viral polymerases are accurate in the absence of proofreading, or the conditions examined have little effect on proofreading by the herpes DNA polymerases.  相似文献   

10.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

11.
Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  相似文献   

12.
The fidelity of DNA replication by Escherichia coli DNA polymerase I (pol I) was assessed in vivo using a reporter plasmid bearing a ColE1-type origin and an ochre codon in the beta-lactamase gene. We screened 53 single mutants within the region Val(700)-Arg(712) in the polymerase active-site motif A. Only replacement of Ile(709) yielded mutator polymerases, with substitution of Met, Asn, Phe, or Ala increasing the beta-lactamase reversion frequency 5-23-fold. Steady-state kinetic analysis of the I709F polymerase revealed reductions in apparent K(m) values for both insertion of non-complementary nucleotides and extension of mispaired primer termini. Abolishment of the 3'-5' exonuclease activity of wild-type pol I increased mutation frequency 4-fold, whereas the combination of I709F and lack of the 3'-5' exonuclease yielded a 400-fold increase. We conclude that accurate discrimination of the incoming nucleotide at the polymerase domain is more critical than exonucleolytic proofreading for the fidelity of pol I in vivo. Surprisingly, the I709F polymerase enhanced mutagenesis in chromosomal DNA, although the increase was 10-fold less than in plasmid DNA. Our findings indicate the feasibility of obtaining desired mutations by replicating a target gene at a specific locus in a plasmid under continuous selection pressure.  相似文献   

13.
Studies in eucaryotic cells (mainly animals and yeast) indicate that at least two DNA polymerases are involved in DNA replication at the level of the replication fork: DNA polymerase alpha, which is associated with DNA primase, is involved in the replication of the lagging strand; DNA polymerase delta, associated with an exonuclease activity, synthesizes the forward continuous DNA strand. Much less information exists concerning plant systems. Previous work from this laboratory provided preliminary evidence of an association between DNA polymerase B from wheat embryo and an exonucleolytic activity. In this paper, we present additional data on the biochemical properties of DNA polymerase B. An improved purification procedure described in this article has been developed. During all the purification steps the nuclease activity was associated with DNA polymerase activity. A biochemical study of this enzyme activity shows that it is an exonuclease which hydrolyses DNA in the 3' to 5' direction. Moreover, this exonuclease confers a proofreading function to DNA polymerase B. Comparison of DNA polymerase B properties (template specificity, sensitivity to DNA replication inhibitors like aphidicolin and butyl-phenyl dGTP, copurification of DNA polymerase and exonuclease activities) with those of animal DNA polymerase delta indicates that these enzymes share many common features. To our knowledge, this is the first report of DNA polymerase delta in higher plants.  相似文献   

14.
The alpha subunit (140 kDa) of DNA polymerase III (pol III) holoenzyme has been purified to near-homogeneity from a plasmid-carrying Escherichia coli strain which overproduced the alpha subunit about 20-fold. Pol III core (containing only the alpha, epsilon, and theta subunits), produced at twice the normal level, was also purified in good yield. The isolated alpha subunit has DNA polymerase activity, which is completely inhibited by 10 mM N-ethylmaleimide or 150 mM KCl as observed in the pol III core or holoenzyme. The alpha subunit has an apparent turnover number of 7.7 nucleotides polymerized per s, compared to 20 for pol III core, and is more thermolabile. The alpha subunit lacks the 3'----5' exonuclease (proofreading) activity of pol III core; neither alpha subunit nor core (nor holoenzyme) possesses any of the previously reported 5'----3' exonuclease activity. Thus, the alpha polypeptide is the polymerase subunit and epsilon (27 kDa) is the proofreading subunit (Scheuermann, R. H., and Echols, H. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7747-7751). Together with the theta polypeptide (10 kDa), of unknown function, they form a pol III core with greater stability and catalytic efficiency.  相似文献   

15.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

16.
We propose that a beta-turn-beta structure, which plays a critical role in exonucleolytic proofreading in the bacteriophage T4 DNA polymerase, is also present in the Saccharomyces cerevisiae DNA pol delta. Site-directed mutagenesis was used to test this proposal by introducing a mutation into the yeast POL3 gene in the region that encodes the putative beta-turn-beta structure. The mutant DNA pol delta has a serine substitution in place of glycine at position 447. DNA replication fidelity of the G447S-DNA pol delta was determined in vivo by using reversion and forward assays. An antimutator phenotype for frameshift mutations in short homopolymeric tracts was observed for the G447S-DNA pol delta in the absence of postreplication mismatch repair, which was produced by inactivation of the MSH2 gene. Because the G447S substitution reduced frameshift but not base substitution mutagenesis, some aspect of DNA polymerase proofreading appears to contribute to production of frameshifts. Possible roles of DNA polymerase proofreading in frameshift mutagenesis are discussed.  相似文献   

17.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

18.
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.  相似文献   

19.
Human DNA polymerase eta, the product of the skin cancer susceptibility gene XPV, bypasses UV photoproducts in template DNA that block synthesis by other DNA polymerases. Pol eta lacks an intrinsic proofreading exonuclease and copies DNA with low fidelity, such that pol eta errors could contribute to mutagenesis unless they are corrected. Here we provide evidence that pol eta can compete with other human polymerases during replication of duplex DNA, and in so doing it lowers replication fidelity. However, we show that pol eta has low processivity and extends mismatched primer termini less efficiently than matched termini. These properties could provide an opportunity for extrinsic exonuclease(s) to proofread pol eta-induced replication errors. When we tested this hypothesis during replication in human cell extracts, pol eta-induced replication infidelity was found to be modulated by changing the dNTP concentration and to be enhanced by adding dGMP to a replication reaction. Both effects are classical hallmarks of exonucleolytic proofreading. Thus, pol eta is ideally suited for its role in reducing UV-induced mutagenesis and skin cancer risk, in that its relaxed base selectivity may facilitate efficient bypass of UV photoproducts, while subsequent proofreading by extrinsic exonuclease(s) may reduce its mutagenic potential.  相似文献   

20.
Eukaryotic DNA polymerases delta and epsilon, both of which are required for chromosomal DNA replication, contain proofreading 3'-->5'exonuclease activity. DNA polymerases lacking proofreading activity act as strong mutators. Here we report isolation of thermotolerant mutants by using a proofreading-deficient DNA polymerase delta variant encoded by pol3-01 in the yeast Saccharomyces cerevisiae. The parental pol3-01 strain grew only poorly at temperatures higher than 38 degrees C. By stepwise elevation of the incubation temperature, thermotolerant mutants that could proliferate at 40 degrees C were successfully obtained; however, no such mutants were isolated with the isogenic POL3 strain. The recessive hot1-1 mutation was defined by genetic analysis of a weak thermotolerant mutant. Strong thermotolerance to 40 degrees C was attained by multiple mutations, at least one of which was recessive. These results indicate that a proofreading-deficient DNA delta polymerase variant is an effective mutator for obtaining yeast mutants that have gained useful characteristics, such as the ability to proliferate in harsh environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号