首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The mutation spectrum induced by UV light has been determined at the hprt locus for both cultured normal (AA8) and UV-sensitive (UV-5) Chinese hamster ovary cells to investigate the effect of DNA repair on the nature of induced mutations. DNA base-pair changes of 23 hprt mutants of AA8 and of 28 hprt mutants of UV-5 were determined by sequence analysis of in vitro amplified hprt cDNA. Almost all mutants in AA8 carried single-base substitutions, transitions and transversions accounting for 38% and 62% of the base changes, respectively. In contrast, in repair-deficient cells (UV-5) tandem and nontandem double mutations represented a considerable portion of the mutations observed (30%), whereas the vast majority of base-pair substitutions were GC greater than AT transitions (87%). Moreover, 5 splice mutants and 2 frameshift mutations were found in the UV-5 collection. In almost all mutants analyzed base changes were located at dipyrimidine sites where UV photoproducts could have been formed. In AA8 the photolesions causing mutations were predominantly located in the nontranscribed strand whereas a strong bias for mutation induction towards photolesions in the transcribed strand was found in UV-5. We hypothesize that preferential removal of lesions from the transcribed strand of the hprt gene accounts for the observed DNA strand specificity of mutations in repair-proficient cells. Furthermore, differences in the degree of misincorporation opposite a lesion for lagging and leading strand DNA synthesis may dictate the pattern of UV-induced mutations in the absence of DNA repair.  相似文献   

2.
The molecular nature of 254 nm ultraviolet light (UV)-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in UV24 Chinese hamster ovary (CHO) cells, which are defective in nucleotide excision repair, was determined. Sequence analysis of 19 hprt mutants showed that single base substitutions (9 mutants) and tandem base changes (7 mutants) dominated the UV mutation spectrum in this cell line. Sixty-five percent of the base substitutions were GC greater than AT transitions, whereas the rest consisted of transitions and transversions at AT base pairs. Analysis of the distribution of dipyrimidine sites over the two DNA strands, where the photoproducts causing these mutations presumably were formed, showed that 12 out of 14 mutations were located in the transcribed strand of the hprt gene. A similar strand distribution of mutagenic photoproducts as in UV24 has previously been found in two other UV-sensitive Chinese hamster cell lines (V-H1 and UV5), indicating that under defective nucleotide excision repair conditions the induction of mutations is strongly biased towards lesions in the transcribed strand of the hprt gene. A plausible explanation for this phenomenon is that during DNA replication large differences exist in the error rate with which DNA polymerase(s) bypass lesions in the templates for the leading and lagging strand, respectively.  相似文献   

3.
The kinds and locations of mutations in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene of 75 independent mutants, derived from N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-treated normal human fibroblasts, were characterized by direct sequencing of mRNA-polymerase chain reaction (mRNA-PCR)-amplified cDNA. Treatment of human cells with low (6 or 8 microM) or high (10 or 12 microM) doses of MNNG resulted in 35-fold or 150-fold average increases in mutation frequency, respectively. A high frequency of mutants lacking a complete exon was observed in both groups. Further characterization of half of these mutants by DNA-PCR amplification of intron-exon boundaries showed that they contained base substitutions. The kinds of base substitutions differed distinctly between these two groups. In the low dose group, a broad mutational spectrum was observed: ten out of the 31 base substitutions were A.T to G.C transitions, six contained G.C to A.T transitions, and the other 15 exhibited transversions. In contrast, the majority (84%) of base substitutions among the high dose group were G.C to A.T transitions; the others (16%) were transversions. All of the 32 G.C to A.T transitions were located on the non-transcribed strand, assuming that the causative premutational lesion was O6-methylguanine. These results indicate preferential repair of lesions located on the transcribed strand. In addition, G.C to A.T and A.T to G.C transitions preferentially occurred at positions with guanine and thymine at the adjacent 5' position, respectively.  相似文献   

4.
Mutations induced by glyoxal and methylglyoxal in mammalian cells.   总被引:3,自引:0,他引:3  
To investigate the mutation spectra of glyoxal and methylglyoxal in mammalian cells, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. The cytotoxicity and the mutation frequency increased according to the doses of glyoxal and methylglyoxal. The majority of glyoxal-induced mutations (65%) were base-pair substitutions, in which G:C-->C:G transversions were predominant. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which G:C-->C:G and G:C-->T:A transversions were predominant.  相似文献   

5.
We previously reported that the majority of base-pair substitutions induced by an endogenous mutagen, methylglyoxal, were G:C-->T:A transversions and G:C-->A:T transitions in wild-type and nucleotide excision repair (NER)-deficient (uvrA or uvrC) Escherichia coli strains. To investigate the mutation spectrum of methylglyoxal in mammalian cells and to compare the spectrum with those detected in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. We treated pMY189 with methylglyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and the mutation frequency (MF) increased according to the dose of methylglyoxal. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which 89% of the substitutions occurred at G:C sites. Among them, G:C-->C:G and G:C-->T:A transversions were predominant. The overall distribution of methylglyoxal-induced mutations detected in the supF gene was different from that for the spontaneous mutations. These results suggest that methylglyoxal may take part in causing G:C-->C:G and G:C-->T:A transversions in vivo.  相似文献   

6.
In the current studies, we investigated base substitutions in the Bacillus subtilis mutT, mutM, and mutY DNA error-prevention system. In the wild type strain, spontaneous mutations were mainly transitions, either G:C --> A:T or A:T --> G:C. Although both transitions and transversions were observed in mutY and mutM mutants, mutM/mutY double mutants contain strictly G:C --> T:A transversions. In the mutT strain, A:T --> C:G transversion was not observed, and over-expression of the B. subtilis mutT gene had no effect on the mutation rate in the Escherichia coli mutT strain. Using 8-oxo-dGTP-induced mutagenesis, transitions especially A:T --> G:C were predominant in the wild type and mutY strains. In contrary, transversion was high on mutY and double mutant (mutM mutY). Finally, the opuBC and yitG genes were identified from the B. subtilis chromosome as mutator genes that prevented the transition base substitutions.  相似文献   

7.
Independent spontaneous or ethyl methanesulphonate (EMS)-induced mutants lacking HPRT enzyme activity were analysed for changes in hprt gene structure. Of 21 spontaneous mutants, 6 had total gene deletions, 2 had partial gene deletions, and 13 were indistinguishable from wild-type by Southern analysis. In contrast a sample of 23 EMS-induced mutants, each of which showed potentially interesting characteristics (e.g. high reversion frequency, X-chromosome rearrangement), showed no detectable hprt gene changes. RNA isolated from 59 mutants with presumptive point mutations (13 spontaneous, 46 EMS-induced) was analysed on dot blots for changes in the amount of hprt mRNA. A wide range of mRNA levels was found, from mutants with undetectable amounts to those with more than wild-type amounts. However, Northern blots of all these mutant RNAs revealed only one (EMS-induced) mutation with a change in hprt mRNA size. Taken with our previously-published data on these mutants, it is argued that they represent a broad range of mutational types, and that the hprt gene mutation system provides a sensitive means of distinguishing mutational spectra of different DNA-damaging agents.  相似文献   

8.
DNA strand specificity for UV-induced mutations in mammalian cells.   总被引:29,自引:9,他引:20       下载免费PDF全文
The influence of DNA repair on the molecular nature of mutations induced by UV light (254 nm) was investigated in UV-induced hprt mutants from UV-sensitive Chinese hamster cells (V-H1) and the parental line (V79). The nature of point mutations in hprt exon sequences was determined for 19 hprt mutants of V79 and for 17 hprt mutants of V-H1 cells by sequence analysis of in vitro-amplified hprt cDNA. The mutation spectrum in V79 cells consisted of single- and tandem double-base pair changes, while in V-H1 cells three frameshift mutations were also detected. All base pair changes in V-H1 mutants were due to GC----AT transitions. In contrast, in V79 all possible classes of base pair changes except the GC----CG transversion were present. In this group, 70% of the mutations were transversions. Since all mutations except one did occur at dipyrimidine sites, the assumption was made that they were caused by UV-induced photoproducts at these sites. In V79 cells, 11 out of 17 base pair changes were caused by photoproducts in the nontranscribed strand of the hprt gene. However, in V-H1 cells, which are completely deficient in the removal of pyrimidine dimers from the hprt gene and which show a UV-induced mutation frequency enhanced seven times, 10 out of 11 base pair changes were caused by photoproducts in the transcribed strand of the hprt gene. We hypothesize that this extreme strand specificity in V-H1 cells is due to differences in fidelity of DNA replication of the leading and the lagging strand. Furthermore, we propose that in normal V79 cells two processes determine the strand specificity of UV-induced mutations in the hprt gene, namely preferential repair of the transcribed strand of the hprt gene and a higher fidelity of DNA replication of the nontranscribed strand compared with the transcribed strand.  相似文献   

9.
A vector plasmid, pZ189, carrying an Escherichia coli supF gene as a target for mutations, was treated with a combination of hydrogen peroxide and Fe3+/EDTA complex and propagated in E. coli host cells that had been induced for SOS functions by ultraviolet irradiation. The mutations frequency increased by up to 30-fold over spontaneous background levels with increasing concentrations of hydrogen peroxide. The increase in mutation frequency correlated with an increase in the formation of 8-hydroxydeoxyguanosine in the pZ189 DNA. Sequence analysis of 82 independent supF mutant plasmids revealed that 70 mutants contained base substitutions, with 63 of the 70 involving a G:C base pair, and with G:C→C:G (28 cases) and G:C→T:A (26 cases) transversions predominating. Investigation of the influence of the local DNA sequence on the transversions revealed that the guanine at the center of the triplet 5′-PuGA-3′ was five times more likely to mutate after treatment with hydrogen peroxide than that at the center of 5′PyGN3′. G:C→T:A transversions presumably resulted from mispairing of an altered G (probably 8-hydroxydeoxyguanosine) with deoxyadenosine. The origin of the G:C→C:G transversions may be an as yet unidentified lesion generated by hydrogen peroxide. Mutagenic hotspots for base substitutions were found at positions 133, 160 and 168. Mutation spectra and the positions of mutagenic hotspots, when compared with a previously determined spontaneous mutagenesis spectrum, also provide information on the mechanism of spontaneous mutagenesis.  相似文献   

10.
The sensitivity of any mutational assay is determined by the level at which spontaneous mutations occur in the corresponding untreated controls. Establishing the type and frequency at which mutations occur naturally within a test system is essential if one is to draw scientifically sound conclusions regarding chemically induced mutations. Currently, mutation-spectra analysis is laborious and time-consuming. Thus, we have developed iMARS, a comprehensive mutation-spectrum analysis package that utilises routinely used methodologies and visualisation tools. To demonstrate the use and capabilities of iMARS, we have analysed the distribution, types and sequence context of spontaneous base substitutions derived from the cII gene mutation assay in transgenic animals. Analysis of spontaneous mutation spectra revealed variation both within and between the transgenic rodent test systems Big Blue Mouse, MutaMouse and Big Blue Rat. The most common spontaneous base substitutions were G:C-->A:T transitions and G:C-->T:A transversions. All Big Blue Mouse spectra were significantly different from each other by distribution and nearly all by mutation type, whereas the converse was true for the other test systems. Twenty-eight mutation hotspots were observed across all spectra generally occurring in CG, GA/TC, GG and GC dinucleotides. A mutation hotspot at nucleotide 212 occurred at a higher frequency in MutaMouse and Big Blue Rat. In addition, CG dinucleotides were the most mutable in all spectra except two Big Blue Mouse spectra. Thus, spontaneous base-substitution spectra showed more variation in distribution, type and sequence context in Big Blue Mouse relative to spectra derived from MutaMouse and Big Blue Rat. The results of our analysis provide a baseline reference for mutation studies utilising the cII gene in transgenic rodent models. The potential differences in spontaneous base-substitution spectra should be considered when making comparisons between these test systems. The ease at which iMARS has allowed us to carry out an exhaustive investigation to assess mutation distribution, mutation type, strand bias, target sequences and motifs, as well as predict mutation hotspots provides us with a valuable tool in helping to distinguish true chemically induced hotspots from background mutations and gives a true reflection of mutation frequency.  相似文献   

11.
Spontaneous Mutation in the Escherichia Coli Laci Gene   总被引:9,自引:0,他引:9       下载免费PDF全文
R. M. Schaaper  R. L. Dunn 《Genetics》1991,129(2):317-326
To gain more detailed insight into the nature and mechanisms of spontaneous mutations, we undertook a DNA sequence analysis of a large collection of spontaneous mutations in the N-terminal region of the Escherichia coli lacI gene. This region of circa 210 base pairs is the target for dominant lacI mutations (i-d) and is suitable for studies of mutational specificity since it contains a relatively high density of detectable mutable sites. Among 414 independent i-d mutants, 70.8% were base substitutions, 17.2% deletions, 7.7% additions and 4.3% single-base frameshifts. The base substitutions were both transitions (60%) and transversions (40%), the largest single group being G.C----A.T (47% of base substitutions). All four transversions were observed. Among the 71 deletions, a hotspot (37 mutants) was present: an 87-bp deletion presumably directed by an 8-bp repeated sequence at its endpoints. The remaining 34 deletions were distributed among 29 different mutations, either flanked (13/34) or not flanked (21/34) by repeated sequences. The 32 additions comprised 29 different events, with only two containing a direct repeat at the endpoints. The single-base frameshifts were the loss of a single base from either repeated (67%) or nonrepeated (33%) bases. A comparison with the spectrum obtained previously in strains defective in DNA mismatch correction (mutH, mutL, mutS strains) yielded information about the apparent efficiency of mismatch repair. The overall effect was 260-fold but varied substantially among different classes of mutations. An interesting asymmetry was uncovered for the two types of transitions, A.T----G.C and G.C----A.T being reduced by mismatch repair 1340- and 190-fold, respectively. Explanations for this asymmetry and its possible implications for the origins of spontaneous mutations are discussed.  相似文献   

12.
Human lymphoblast mutants at the X-linked hprt locus have been examined by Southern blot, Northern blot and DNA sequence analysis. A previous study had shown that approximately a third of the spontaneously-arising mutants and half those induced by formaldehyde showed no alteration in restriction fragment pattern and thus were classified as point mutations. In this report, Northern blot analysis was used to show that these point mutants fall into 4 categories: normal size and amount of RNA, normal size but reduced amounts, reduced size of RNA or no RNA. Sequence analyses of cDNAs prepared from hprt mRNAs were performed on 1 spontaneous and 7 formaldehyde-induced mutants with normal Northern blots. The spontaneous mutant was caused by an AT----GC transition. 6 of the formaldehyde-induced mutants were base substitutions, all of which occurred at AT base-pairs. There was an apparent hot spot, in that 4/6 independent mutants were AT----CG transversions at one specific site. The remaining mutant had lost exon 8.  相似文献   

13.
To investigate the mutation spectrum of a well-known mutagen, methylglyoxal, and the influence of nucleotide excision repair (NER) on methylglyoxal-induced mutations, we treated wild-type and NER-deficient (uvrA or uvrC) Escherichia coli strains with methylglyoxal, and analyzed mutations in the chromosomal lacI gene. In the three strains, the cell death and the mutation frequency increased according to the dose of methylglyoxal added to the culture medium. The frequencies of methylglyoxal-induced base-pair substitutions were higher in the NER-deficient strains than in the wild-type strain, in the presence and absence of mucAB gene. Paradoxically, the frequency of methylglyoxal-induced TGGC frameshifts was higher in the wild-type strain than in the NER-deficient strains. When the methylglyoxal-induced mutation spectra in the presence and absence of mucAB gene are compared, the ratios of base-pair substitutions to frameshifts were increased by the effects of mucAB gene. In the three strains, more than 75% of the base-pair substitutions occurred at G:C sites, independent of the mucAB gene. When the mucAB gene was present, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. When the mucAB gene was absent, the predominant mutations differed in the three strains: in the wild-type and uvrC strains, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions, while in the uvrA strains, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. These results suggest that NER may be involved in both the repair and the fixation of methylglyoxal-induced mutations.  相似文献   

14.
To test the hypothesis that reactive species in the oxygen cascade are responsible for spontaneous mutation, we examined the spectra of oxygen and hydrogen peroxide-induced mutations at the hprt locus in a human B-lymphoblastoid cell line. We compared these spectra with the spontaneous mutational spectrum. Large gene alterations were studied by Southern analysis of individual TGR clones. A combination of high fidelity polymerase chain reaction, denaturing gradient gel electrophoresis and direct DNA sequencing were used to detect and identify point mutations in exon 3 of hprt. With regard to spontaneous mutations, a previous study showed that 39% of the spontaneous TGR clones had large gene alterations. In the present study, the analysis of spontaneous point mutations within exon 3 revealed two hotspots. A one base-pair deletion (-A) at base-pair 256 or 257 and a two base-pair deletion (-GG) at base-pair 237 and 238, were detected in triplicate cultures. Each of the hotspots comprised about 1% of the TGR mutants. The analysis of individual oxygen-induced TGR clones (48 h, 910 microM-O2) showed 43% had large gene alterations similar to the spontaneous TGR clones. However, none of the spontaneous point mutation hotspots was found among triplicate oxygen-treated cultures. Two point mutations in common with H2O2-treated cultures were found in one of the three oxygen-treated cultures. Hydrogen peroxide-induced mutations (1 h, 20 microM) also differed from spontaneous mutations. Only 24% of the hydrogen peroxide-induced TGR clones had large gene alterations. The analysis of point mutations showed three hotspots within exon 3 of hprt. An AT to TA transversion at base-pair 259 had an average frequency of 3% of all TGR mutants (present in all of 3 H2O2-treated cultures). Two GC to CG transversions at base-pairs 243 and 202 were present at a frequency of 0.6% and 0.4%, respectively. A five base-pair deletion (base-pair 274 to 278) was present at an average frequency of 0.3%. The latter three mutations were detected in two of three H2O2-treated cultures. Thus, the point mutation spectra of both oxygen and hydrogen peroxide were significantly different from the spontaneous spectrum. The oxygen and hydrogen peroxide-induced spectra shared some features, suggesting that oxygen and hydrogen peroxide share some but not all pathways for induction of mutations within the DNA sequence studied here.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The vermilion gene in Drosophila has extensively been used for the molecular analysis of mutations induced by chemicals in germ cells in vivo. The gene is located on the X-chromosome and is a useful target for the study of mutagenesis since all types of mutations are generated. We have critically evaluated this system with respect to sensitivity for mutation induction and selectivity for different types of mutations, using a database of more than 600 vermilion mutants induced in postmeiotic male germ cells by 18 mutagens. From most of these mutants the mutation has been analysed. These data showed 336 base substitutions, 96 intra-locus DNA rearrangements and 78 multi-locus deletions (MLD). Mutants containing a MLD were either heterozygous sterile or homozygous and hemizygous lethal. The distribution of both basepair (bp) changes and intra-locus rearrangements over the coding region of the vermilion gene was uniform with no preferences concerning 5' or 3' regions, certain exons, splice sites, specific amino acid changes or nonsense mutations. Possible hotspots for base substitutions seem to be related to the type of DNA damage rather than to the vermilion system. Gene mutations other than bp changes were examined on sequence characteristics flanking the deletion breakpoints. Induction frequencies of vermilion mosaic mutants were, in general, higher than those of vermilion complete mutants, suggesting that persistent lesions are the main contributors to the molecular spectra. Comparison of induction frequencies of vermilion mutants and sex-linked recessive lethal (SLRL) mutants for the 18 mutagens showed that the sensitivity of the vermilion gene against a mutagenic insult is representative for genes located on the X-chromosome. The effect of nucleotide excision repair (NER) on the formation of SLRL mutants correlated with an increase of transversions in the vermilion spectra under NER deficient conditions. Furthermore, the clastogenic potency of the mutagens, i.e., the efficiency to induce chromosomal-losses vs. SLRL forward mutations, shows a positive correlation with the percentage of DNA deletions in the molecular spectra of vermilion mutants.  相似文献   

16.
We have isolated and characterized 47 ultraviolet light-induced hprt mutants from a simian virus 40-transformed excision-repair-deficient xeroderma pigmentosum cell line (complementation group A). Twenty-one independent mutations were found, of which the majority were point mutations. Eleven of these were identified as base changes, nine of which could be attributed to ultraviolet damage on the transcribed DNA strand. Both transitions and transversions were found among the single base changes. A large proportion of the mutations (13/21) resulted in aberrant splicing of the hprt gene, suggesting that the target size for mutations resulting in aberrant splicing must be quite large. A small number of spontaneous mutations were identified, most of which were large deletions. Our data provide a spectrum for the intrinsic mutations resulting from ultraviolet damage in human cells in the absence of repair.  相似文献   

17.
18.
Wang Q  Zhang G  Du Yh  Zhao Y  Qiu Gy 《Mutation research》2003,528(1-2):55-60
Double-stranded M13 mp 18 DNA was irradiated with 30 ke V carbon ions in dry state under vacuum to investigate the low-energy heavy ion induced mutation spectra. When the irradiated DNA was used to transfect Escherichia coli JM 105, 3.6-5.7-fold increases in mutation frequency were observed, in contrast to the spontaneous group. Sequences of the 92 induced mutants showed that the carbon ions in this study could induce an interesting mutation spectrum in the lacZ alpha gene. One-base mutations (96.8%) and base pair substitutions (56.4%) were predominant, most of which involved G:C base pairs (90.6%), especially G:C --> T:A transversions (49.6%) and G:C --> A:T transitions (39.6%). This is similar to the spectra induced by gamma-rays in the same ds M13, wild type E. coli system. We also found a considerable amount of carbon ion induced one-base deletion (38.5%) and the mutation sites distribution on the target lacZ alpha gene was obviously non-random. We compared this study with previous data employing gamma-rays to discuss the possible causes of the mutation spectrum.  相似文献   

19.
The spectrum of DNA sequence alterations in the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene of HPRTase-deficient T-lymphocytes isolated from the blood of healthy male donors was determined and compared with the spectrum found in patients suffering from genetic diseases (Lesch-Nyhan syndrome or gouty arthritis) associated with a mutation in the same gene. Most of the T-cell mutants still produced hprt mRNA which was converted into cDNA and used for DNA sequence analysis after amplification using the polymerase chain reaction (PCR). In 39% of the 31 analyzed T-cell mutants of normal donors 1 or 2 exons were completely or partially deleted from hprt mRNA, probably because of a mutation in a splice acceptor site. Among patients suffering from the Lesch-Nyhan syndrome or gouty arthritis, the class of splice mutations amounts only to 7%. These data suggest that carriers of splice mutations often do not show the characteristics of HPRTase deficiency associated with these genetic diseases, because correctly spliced hprt mRNA is still produced at a low level.  相似文献   

20.
Mutations in the hprt gene in T-lymphocyte clones isolated from primary cultures treated with the (+)-anti enantiomer of 7,8-dihydroxy-9,10-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene (BPDE) in vitro, and from untreated control cultures, were characterized using polymerase chain reaction and direct sequencing of hprt cDNA and genomic fragments. The spectrum of BPDE-induced mutations was very specific and clearly different from the background spectrum, which comprised many different types of mutations. Of the BPDE-induced mutations, 20/22 were transversions of GC base pairs and 18/22 were GC greater than TA transversions, which is in agreement with what has been found in other mammalian systems. While no particular 'hotspot' was observed for BPDE in the hprt gene, a sequence context specificity was detected. Ten of the 14 BPDE-induced mutations in the coding region were located in the sequence context AGG, and 2 in AG dinucleotides, which indicates that such sequences are sensitive to BPDE mutagenesis. Nine of the 22 BPDE-induced mutations and 2/12 background point mutations caused mRNA splicing errors. Six of the BPDE-induced splicing errors were caused by GC greater than TA transversions in the AG dinucleotide of different splice acceptor sites, which indicates that these sites may be frequent targets of BPDE mutagenesis. All mutated GC base pairs in the BPDE-induced spectrum were oriented so that the guanine was located on the non-transcribed strand. Assuming that the premutagenic lesion in these cases was covalent binding of BPDE to guanine and that BPDE bound randomly to both strands, the strand specificity of the BPDE-induced mutations indicates that preferential excision repair of BPDE adducts on the transcribed strand occurs in the hprt gene in human T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号