首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acylcarnitines have been linked to obesity-induced insulin resistance. However the majority of these studies have focused on acylcarnitines in plasma. It is currently unclear to what extent plasma levels of acylcarnitines reflect tissue acylcarnitine metabolism. We investigated the correlation of plasma acylcarnitine levels with selected tissue acylcarnitines as measured with tandem mass spectrometry, in both fed and fasted BALB/cJ (BALB) and C57BL/6N (Bl6) mice. Fasting affected acylcarnitine levels in all tissues. These changes varied substantially between the different tissue compartments. No significant correlations were found between plasma acylcarnitine species and their tissue counterparts in both mouse strains, with the exception of plasma C4OH-carnitine in BALB mice. We suggest that this lack of correlation is due to differences in acylcarnitine turnover rates between plasma and tissue compartments and the fact that the plasma acylcarnitine profile is a composition of acylcarnitines derived from different compartments. Therefore, plasma acylcarnitine levels do not reflect tissue levels and should be interpreted with caution. A focus on tissue acylcarnitine levels is warranted in metabolic studies.  相似文献   

2.
Diabetes-induced changes in phospholipase A(2) (PLA(2)) activity have been measured in several tissues but are undefined in diabetic myocardium. We measured ventricular PLA(2) activity in control, streptozotocin-induced diabetic, and insulin-treated diabetic rats and characterized myocardial phospholipids to determine whether diabetes altered myocardial phospholipid metabolism. Increased membrane-associated Ca(2+)-independent PLA(2) (iPLA(2)) activity was observed in diabetes that was selective for arachidonylated phospholipids. Increased iPLA(2) activity was accompanied by an increase in choline lysophospholipids. Diabetes was associated with marked alterations in the phospholipid composition of the myocardium, characterized by decreases in esterified arachidonic and docosahexaenoic acids and increases in linoleic acid. The decrease in polyunsaturated fatty acids was confined to diacylphospholipids, whereas the relative amount of these fatty acids in plasmalogens was increased. Diabetes-induced changes in PLA(2) activity, lysophospholipid production, and alterations in phospholipid composition were all reversed by insulin treatment of diabetic animals. Diabetes-induced changes in membrane phospholipid content and phospholipid hydrolysis may contribute to some of the alterations in myocardial function that are observed in diabetic patients.  相似文献   

3.
Long-chain acylcarnitines accumulate in long-chain fatty acid oxidation defects, especially during periods of increased energy demand from fat. To test whether this increase in long-chain acylcarnitines in very long-chain acyl-CoA dehydrogenase (VLCAD(-/-)) knock-out mice correlates with acyl-CoA content, we subjected wild-type (WT) and VLCAD(-/-) mice to forced treadmill running and analyzed muscle long-chain acyl-CoA and acylcarnitine with tandem mass spectrometry (MS/MS) in the same tissues. After exercise, long-chain acyl-CoA displayed a significant increase in muscle from VLCAD(-/-) mice [C16:0-CoA, C18:2-CoA and C18:1-CoA in sedentary VLCAD(-/-): 5.95 +/- 0.33, 4.48 +/- 0.51, and 7.70 +/- 0.30 nmol x g(-1) wet weight, respectively; in exercised VLCAD(-/-): 8.71 +/- 0.42, 9.03 +/- 0.93, and 14.82 +/- 1.20 nmol x g(-1) wet weight, respectively (P < 0.05)]. Increase in acyl-CoA in VLCAD-deficient muscle was paralleled by a significant increase in the corresponding chain length acylcarnitine. Exercise resulted in significant lowering of the free carnitine pool in VLCAD(-/-) muscle. This is the first study demonstrating that acylcarnitines and acyl-CoA directly correlate and concomitantly increase after exercise in VLCAD-deficient muscle.  相似文献   

4.
Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is a disorder of fatty acid catabolism, with autosomal recessive inheritance. The disease is characterized by episodic illness associated with potentially fatal hypoglycemia and has a relatively high frequency. A rapid and reliable method for the diagnosis of MCAD deficiency is highly desirable. Analysis of specific acylcarnitines was performed by isotope-dilution tandem mass spectrometry on plasma or whole blood samples from 62 patients with MCAD deficiency. Acylcarnitines were also analyzed in 42 unaffected relatives of patients with MCAD deficiency and in other groups of patients having elevated plasma C8 acylcarnitine, consisting of 32 receiving valproic acid, 9 receiving medium-chain triglyceride supplement, 4 having multiple acyl-coenzyme A dehydrogenase deficiency, and 8 others with various etiologies. Criteria for the unequivocal diagnosis of MCAD deficiency by acylcarnitine analysis are an elevated C8-acylcarnitine concentration (> 0.3 microM), a ratio of C8/C10 acylcarnitines of > 5, and lack of elevated species of chain length > C10. These criteria were not influenced by clinical state, carnitine treatment, or underlying genetic mutation, and no false-positive or false-negative results were obtained. The same criteria were also successfully applied to profiles from neonatal blood spots retrieved from the original Guthrie cards of eight patients. Diagnosis of MCAD deficiency can therefore be made reliably through the analysis of acylcarnitines in blood, including presymptomatic neonatal recognition. Tandem mass spectrometry is a convenient method for fast and accurate determination of all relevant acylcarnitine species.  相似文献   

5.
In the heart, a nutritional state (fed or fasted) is characterized by a unique energy metabolism pattern determined by the availability of substrates. Increased availability of acylcarnitines has been associated with decreased glucose utilization; however, the effects of long-chain acylcarnitines on glucose metabolism have not been previously studied. We tested how changes in long-chain acylcarnitine content regulate the metabolism of glucose and long-chain fatty acids in cardiac mitochondria in fed and fasted states. We examined the concentrations of metabolic intermediates in plasma and cardiac tissues under fed and fasted states. The effects of substrate availability and their competition for energy production at the mitochondrial level were studied in isolated rat cardiac mitochondria. The availability of long-chain acylcarnitines in plasma reflected their content in cardiac tissue in the fed and fasted states, and acylcarnitine content in the heart was fivefold higher in fasted state compared to the fed state. In substrate competition experiments, pyruvate and fatty acid metabolites effectively competed for the energy production pathway; however, only the physiological content of acylcarnitine significantly reduced pyruvate and lactate oxidation in mitochondria. The increased availability of long-chain acylcarnitine significantly reduced glucose utilization in isolated rat heart model and in vivo. Our results demonstrate that changes in long-chain acylcarnitine contents could orchestrate the interplay between the metabolism of pyruvate–lactate and long-chain fatty acids, and thus determine the pattern of energy metabolism in cardiac mitochondria.  相似文献   

6.
Earlier studies have suggested an important role of carnitine pathway in cardiovascular pathology. However, the redistribution of carnitine and acylcarnitine pools, as a result of altered carnitine metabolism, is not clearly known in patients with acute myocardial infarction (AMI). We compared the carnitine and acylcarnitine profiles of 65 AMI patients, including 26 ST-elevated myocardial infarction (STEMI) and 39 non-ST-elevated myocardial infarction (NSTEMI), 28 patients with chest pain and 154 normal controls. The levels of carnitine and acylcarnitines in the blood spots were determined using LC-MS/MS. Total and free carnitine levels were significantly higher in all the patient groups in the following order: STEMI > NSTEMI > chest pain. The levels of short- and medium-chain acylcarnitines were significantly higher in patient groups. Among the long-chain acylcarnitines, C14:2 and C16:1 levels were significantly increased in STEMI and NSTEMI. The ratio of free carnitine to short-chain or medium-chain acylcarnitines was significantly decreased in STEMI, NSTEMI and chest pain patients however a significant increase was observed in the ratio of carnitine to long-chain acylcarnitines in all the patient groups as compared to normal controls. In conclusion, alterations in carnitine and acylcarnitine levels in the blood of AMI patients indicate the possibility of impaired carnitine homeostasis in ischemic myocardium. The clinical implications of these findings for the risk screening or diagnosis and prognosis of AMI require additional follow-up studies on large number of patients. We also suggest that a dual-marker strategy using carnitine (longer plasma half-life) in combination with troponin (shorter plasma half-life) could be a more promising biomarker strategy in risk stratification of patients.  相似文献   

7.
Previously, we identified calcium-independent phospholipase A2gamma (iPLA2gamma) with multiple translation initiation sites and dual mitochondrial and peroxisomal localization motifs. To determine the role of iPLA2gamma in integrating lipid and energy metabolism, we generated transgenic mice containing the alpha-myosin heavy chain promoter (alphaMHC) placed proximally to the human iPLA2gamma coding sequence that resulted in cardiac myocyte-restricted expression of iPLA2gamma (TGiPLA2gamma). TGiPLA2gamma mice possessed multiple phenotypes including: 1) a dramatic approximately 35% reduction in myocardial phospholipid mass in both the fed and mildly fasted states; 2) a marked accumulation of triglycerides during brief caloric restriction that represented 50% of total myocardial lipid mass; and 3) acute fasting-induced hemodynamic dysfunction. Biochemical characterization of the TGiPLA2gamma protein expressed in cardiac myocytes demonstrated over 25 distinct isoforms by two-dimensional SDS-PAGE Western analysis. Immunohistochemistry identified iPLA2gamma in the peroxisomal and mitochondrial compartments in both wild type and transgenic myocardium. Electron microscopy revealed the presence of loosely packed and disorganized mitochondrial cristae in TGiPLA2gamma mice that were accompanied by defects in mitochondrial function. Moreover, markedly elevated levels of 1-hydroxyl-2-arachidonoyl-sn-glycero-3-phosphocholine and 1-hydroxyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine were prominent in the TGiPLA2gamma myocardium identifying the production of signaling metabolites by this enzyme in vivo. Collectively, these results identified the participation of iPLA2gamma in the remarkable lipid plasticity of myocardium, its role in generating signaling metabolites, and its prominent effects in modulating energy storage and utilization in myocardium in different metabolic contexts.  相似文献   

8.
The role of nuclear membrane phospholipids as targets of phospholipases resulting in the generation of nuclear signaling messengers has received attention. In the present study, we have exploited the utility of electrospray ionization mass spectrometry to determine the phospholipid content of nuclei isolated from perfused hearts. Rat heart nuclei contained choline glycerophospholipids composed of palmitoyl and stearoyl residues at the sn-1 position with oleoyl, linoleoyl, and arachidonoyl residues at the sn-2 position. Diacyl molecular species were the predominant molecular subclass in the choline glycerophospholipids, with the balance of the molecular species being plasmalogens. In the ethanolamine glycerophospholipid pool from rat heart nuclei approximately 50% of the molecular species were plasmalogens, which were enriched with arachidonic acid at the sn-2 position. A 50% loss of myocytic nuclear choline and ethanolamine glycerophospholipids was observed in hearts rendered globally ischemic for 15 min followed by 90 min of reperfusion in comparisons with the content of these phospholipids in control perfused hearts. The loss of nuclear choline and ethanolamine glycerophospholipids during reperfusion of ischemic myocardium was partially reversed by the calcium-independent phospholipase A(2) (iPLA(2)) inhibitor bromoenol lactone (BEL), suggesting that the loss of nuclear phospholipids during ischemia/reperfusion is mediated, in part, by iPLA(2). Western blot analyses of isolated nuclei from ischemic hearts demonstrated that iPLA(2) is translocated to the nucleus after myocardial ischemia. Taken toghether, these studies have demonstrated that nuclear phospholipid mass decreases after myocardial ischemia by a mechanism that involves, at least in part, phospholipolysis mediated by iPLA2.  相似文献   

9.
Carnitine is associated with fatty acid metabolism in plants   总被引:1,自引:0,他引:1  
The finding of acylcarnitines alongside free carnitine in Arabidopsis thaliana and other plant species, using tandem mass spectrometry coupled to liquid chromatography shows a link between carnitine and plant fatty acid metabolism. Moreover the occurrence of both medium- and long-chain acylcarnitines suggests that carnitine is connected to diverse fatty acid metabolic pathways in plant tissues. The carnitine and acylcarnitine contents in plant tissues are respectively a hundred and a thousand times lower than in animal tissues, and acylcarnitines represent less than 2% of the total carnitine pool whereas this percentage reaches 30% in animal tissues. These results suggest that carnitine plays a lesser role in lipid metabolism in plants than it does in animals.  相似文献   

10.
Han X  Yang J  Cheng H  Yang K  Abendschein DR  Gross RW 《Biochemistry》2005,44(50):16684-16694
Diabetic cardiomyopathy is characterized by excessive utilization of fatty acid substrate, diminished glucose transport, and mitochondrial dysfunction. However, the chemical mechanisms linking altered substrate utilization to mitochondrial dysfunction are unknown. Herein, we use shotgun lipidomics and multidimensional mass spectrometry to identify dramatic decreases in the critical mitochondrial inner membrane lipid, cardiolipin, in diabetic murine myocardium (from 7.2 +/- 0.3 nmol/mg of protein in control hearts to 3.1 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Moreover, the direct metabolic precursor of cardiolipin, phosphatidylglycerol, was also substantially depleted (2.5 +/- 0.2 nmol/mg of protein in control hearts vs 1.3 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Similarly, glycerol 3-phosphate, necessary for the penultimate step in phosphatidylglycerol production, decreased by 58% in diabetic myocardium (from 4.9 +/- 0.9 to 2.2 +/- 0.3 nmol/mg of protein; n = 4). Since Barth's syndrome (a disorder of cardiolipin metabolism) induces mitochondrial dysfunction and cardiomyopathy, and since decreases in cardiolipin content precipitate mitochondrial dysfunction, these results provide a unifying hypothesis linking altered substrate utilization and metabolic flux in diabetic myocardium with altered lipid metabolism, cardiolipin depletion, mitochondrial dysfunction, and resultant hemodynamic compromise.  相似文献   

11.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

12.
Murine myocardium contains diminutive amounts of calcium-independent phospholipase A2 (iPLA2) activity (<5% that of human heart), and malignant ventricular tachyarrhythmias are infrequent during acute murine myocardial ischemia. Accordingly we considered the possibility that the mouse was a species-specific knockdown of the human pathologic phenotype of ischemiainduced lethal ventricular tachyarrhythmias. Transgenic mice were generated expressing amounts of iPLA2beta activity comparable to that present in human myocardium. Coronary artery occlusion in Langendorff perfused hearts from transgenic mice resulted in a 22-fold increase in fatty acids released into the venous eluent (29.4 nmol/ml in transgenic versus 1.35 nmol/ml of eluent in wild-type mice), a 4-fold increase in lysophosphatidylcholine mass in ischemic zones (4.9 nmol/mg in transgenic versus 1.1 nmol/mg of protein in wild-type mice), and malignant ventricular tachyarrhythmias within minutes of ischemia. Neither normally perfused transgenic nor ischemic wild-type hearts demonstrated these alterations. Pretreatment of Langendorff perfused transgenic hearts with the iPLA2 mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) just minutes prior to induction of ischemia completely ablated fatty acid release and lysolipid accumulation and rescued transgenic hearts from malignant ventricular tachyarrhythmias. Collectively these results demonstrate that ischemia activates iPLA2beta in intact myocardium and that iPLA2beta-mediated hydrolysis of membrane phospholipids can induce lethal malignant ventricular tachyarrhythmias during acute cardiac ischemia.  相似文献   

13.
The carnitine/acylcarnitine carrier (CAC) is a transport protein of the inner mitochondrial membrane that belongs to the mitochondrial carrier protein family. In its cytosolic conformation the carrier consists of a bundle of six transmembrane α-helices, which delimit a water filled cavity opened towards the cytosol and closed towards the matrix by a network of interacting charged residues. Most of the functional data on this transporter come from studies performed with the protein purified from rat liver mitochondria or recombinant proteins from different sources incorporated into phospholipid vesicles (liposomes). The carnitine/acylcarnitine carrier transports carnitine and acylcarnitines with acyl chains of various lengths from 2 to 18 carbon atoms. The mammalian transporter exhibits higher affinity for acylcarnitines with longer carbon chains. The functional data indicate that CAC plays the important function of catalyzing transport of acylcarnitines into the mitochondria in exchange for intramitochondrial free carnitine. This results in net transport of fatty acyl units into the mitochondrial matrix where they are oxidized by the β-oxidation enzymes. The essential role of the transporter in cell metabolism is demonstrated by the fact that alterations of the human gene SLC25A20 coding for CAC are associated with a severe disease known as carnitine carrier deficiency. This autosomal recessive disorder is characterized by life-threatening episodes of coma induced by fasting, cardiomyopathy, liver dysfunction, muscle weakness, respiratory distress and seizures. Until now 35 different mutations of CAC gene have been identified in carnitine carrier deficient patients. Some missense mutations concern residues of the signature motif present in all mitochondrial carriers. Diagnosis of carnitine carrier deficiency requires biochemical and genetic tests; treatment is essentially limited to important dietetic measures. Recently, a pharmacological approach based on the use of statins and/or fibrates for the treatment of CAC-deficient patients with mild phenotype has been proposed.  相似文献   

14.
Rates of acylcarnitine oxidation by isolated heart mitochondria from various animal species were measured polarographically, and by using a spectrophotometric assay [see Osmundsen & Bremer (1977) Biochem. J. 164, 621-633]. Polarographic measurements do not give a correct guide to abilities to beta-oxidize very-long-chain acylcarnitines, in particular C22:1 fatty acylcarnitines. 2. No significant species differences were detected in the abilities to beta-oxidize various C22:1 fatty acylcarnitines. Significant species differences were, however, detected when rates of beta-oxidation were correlated with rates of respiration brought about by very-long-chain acylcarnitines. We concluded that some aspects of oxidative metabolism (possibly the oxidation of tricarboxylic acid-cycle intermediates) are inhibited by very-long-chain fatty acids in some species (e.g. the rat and the cat but not in others (e.g. the pig and the rabbit). 3. It is proposed that the pattern of variation of rates of oxidation of various acylcarnitines (as measured spectrophotometrically) of various chain lengths can be used as a guide to the chain-length specificities of the acyl-CoA dehydrogenases of beta-oxidation (EC 1.3.99.3).  相似文献   

15.
Calcium-independent phospholipase A2beta (iPLA2beta) participates in numerous diverse cellular processes, such as arachidonic acid release, insulin secretion, calcium signaling, and apoptosis. Herein, we demonstrate the highly selective iPLA2beta-catalyzed hydrolysis of saturated long-chain fatty acyl-CoAs (palmitoyl-CoA approximately myristoyl-CoA > stearoyl-CoA > oleoyl-CoA approximately = arachidonoyl-CoA) present either as monomers in solution or guests in host membrane bilayers. Site-directed mutagenesis of the iPLA2beta catalytic serine (S465A) completely abolished acyl-CoA thioesterase activity, demonstrating that Ser-465 catalyzes both phospholipid and acyl-CoA hydrolysis. Remarkably, incubation of iPLA2beta with oleoyl-CoA, but not other long-chain acyl-CoAs, resulted in robust stoichiometric covalent acylation of the enzyme. Moreover, S465A mutagenesis or pretreatment of wild-type iPLA2beta with (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one unexpectedly increased acylation of the enzyme, indicating the presence of a second reactive nucleophilic residue that participates in the formation of the fatty acyl-iPLA2beta adduct. Radiolabeling of intact Sf9 cells expressing iPLA2beta with [3H]oleic acid demonstrated oleoylation of the membrane-associated enzyme. Partial trypsinolysis of oleoylated iPLA2beta and matrix-assisted laser desorption ionization mass spectrometry analysis localized the acylation site to a hydrophobic 25-kDa fragment (residues approximately 400-600) spanning the active site to the calmodulin binding domain. Intriguingly, calmodulin-Ca2+ blocked acylation of iPLA2beta by oleoyl-CoA. Remarkably, the addition of low micromolar concentrations (5 microM) of oleoyl-CoA resulted in reversal of calmodulin-mediated inhibition of iPLA2 beta phospholipase A2 activity. These results collectively identify the molecular species-specific acyl-CoA thioesterase activity of iPLA2beta, demonstrate the presence of a second active site that mediates iPLA2beta autoacylation, and identify long-chain acyl-CoAs as potential candidates mediating calcium influx factor activity.  相似文献   

16.
Measurement of the specific activity of cellular pools of long-chain acylcarnitines is complicated by interference of other labeled cellular lipids, especially phosphatidylcholine and sphingomyelin. To overcome these problems the lipid extract from rabbit aorta labeled with [1-14C]palmitate was treated with phospholipase C. Upon two-dimensional thin-layer chromatography, the long-chain acylcarnitines could be isolated in an area free of interfering radioactivity. Mobility of long-chain carnitines was inversely proportional to the fatty acid chain length. The amount of long-chain acylcarnitine was quantified from their carnitine content after alkaline hydrolysis using carnitine acetyltransferase.  相似文献   

17.
We studied the effects of L-carnitine supplementation at a small dose on the profiles of acylcarnitines in serum and urine, as well as the renal handling of acylcarnitines, in a patient with multiple acyl-coenzyme A dehydrogenation defect. After supplementation with L-carnitine at a dose of 20 mg/kg/day, the concentration of each acylcarnitine measured both in the serum and in the urine had increased significantly, with the exception of that of an acylcarnitine with a carbon chain length (C) of 8 (C8 acylcarnitine). The magnitude of increase in the concentrations of the acylcarnitines in the serum was not associated with chain length, whereas in the urine, the magnitude tended to be greater in proportion to the shortness of the chain length. The fractional excretions of C2-C5 acylcarnitines exceeded 100%, indicating that they were produced in, or transported across, renal tubular epithelial cells and secreted into the urine. These results indicate that supplementation with a relatively small amount of L-carnitine can enhance the renal excretion of accumulated short-chain-length acylcarnitines through tubular excretion, in addition to basic glomerular filtration.  相似文献   

18.
To identify the peroxisome proliferator-inducible acylcarnitine hydrolase in C57BL/6 mice, acylcarnitine hydrolase was purified to homogeneity using column chromatography. The purified enzyme, named ACH M1, had a subunit molecular weight of 60kDa. ACH M1 could hydrolyze classical carboxylesterase (CES) substrates as well as palmitoyl-dl-carnitine and these activities were inhibited by anti-rat CES antibodies. The peptide fragments of ACH M1 were identical to those of the deduced amino acid sequence of mouse CES2 isozyme. These findings suggested that ACH M1 was a member of the CES2 family. The mouse CES2 cDNA, designated mCES2, was cloned from mouse liver. The recombinant mCES2 expressing in Sf9 cells showed high level of catalytic activity toward acylcarnitines. Furthermore, the biological characteristics of the expressed protein were identical with those of ACH M1 in many cases, suggesting that mCES2 encodes mouse liver ACH M1.  相似文献   

19.
Han X  Yang J  Yang K  Zhao Z  Abendschein DR  Gross RW 《Biochemistry》2007,46(21):6417-6428
Recently, we have identified the dramatic depletion of cardiolipin (CL) in diabetic myocardium 6 weeks after streptozotocin (STZ) injection that was accompanied by increases in triacylglycerol content and multiple changes in polar lipid molecular species. However, after 6 weeks in the diabetic state, the predominant lipid hallmarks of diabetic cardiomyopathy were each present concomitantly, and thus, it was impossible to identify the temporal course of lipid alterations in diabetic myocardium. Using the newly developed enhanced shotgun lipidomics approach, we demonstrated the dramatic loss of abundant CL molecular species in STZ-treated hearts at the very earliest stages of diabetes accompanied by a profound remodeling of the remaining CL molecular species including a 16-fold increase in the content of 18:2-22:6-22:6-22:6 CL. These alterations in CL metabolism occur within days after the induction of the diabetic state and precede the triacylglycerol accumulation manifest in diabetic myocardium. Similarly, in ob/ob mice, a dramatic and progressive redistribution from 18:2 FA-containing CL molecular species to 22:6 FA-containing CL molecular species was also identified. Collectively, these results demonstrate alterations in CL hydrolysis and remodeling at the earliest stages of diabetes and are consistent with a role for alterations in CL content in precipitating mitochondrial dysfunction in diabetic cardiomyopathy.  相似文献   

20.
Glutaric aciduria type 2 (multiple acyl-CoA dehydrogenase deficiency, MAD) is a multiple defect of mitochondrial acyl-CoA dehydrogenases due to a deficiency of electron transfer flavoprotein (ETF) or ETF dehydrogenase. The clinical spectrum are relatively wide from the neonatal onset, severe form (MAD-S) to the late-onset, milder form (MAD-M). In the present study, we determined whether the in vitro probe acylcarnitine assay using cultured fibroblasts and electrospray ionization tandem mass spectrometry (MS/MS) can evaluate their clinical severity or not. Incubation of cells from MAD-S patients with palmitic acid showed large increase in palmitoylcarnitine (C16), whereas the downstream acylcarnitines; C14, C12, C10 or C8 as well as C2, were extremely low. In contrast, accumulation of C16 was smaller while the amount of downstream metabolites was higher in fibroblasts from MAD-M compared to MAD-S. The ratio of C16/C14, C16/C12, or C16/C10, in the culture medium was significantly higher in MAD-S compared with that in MAD-M. Loading octanoic acid or myristic acid led to a significant elevation in C8 or C12, respectively in MAD-S, while their effects were less pronounced in MAD-M. In conclusion, it is possible to distinguish MAD-S and MAD-M by in vitro probe acylcarnitine profiling assay with various fatty acids as substrates. This strategy may be applicable for other metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号