首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. A controlled-environment chamber constructed from a standard chest freezer was used to grow and measure the CO2 exchange of small stands of lettuce ( Lactuca sativa L. ev. Ambassador). The chamber, with horizontal air flow, provided good control of air temperature ( c. 6 to 16°C), irradiance (0–300 μmol PAR m 2S1 and CO2 (350–1000 μmol mol−1). The photosynthetic response to changes in these variables was measured using an inexpensive CO2 dosing system which recorded the input rate required to maintain a constant concentration of CO2 (to ± 2.5%). Characteristis of the growth environment and the changes in response to temperature and irradiance are described.  相似文献   

2.
The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m−2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3–4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed – especially since arid and semiarid biomes make up >30% of Earth's land surface.  相似文献   

3.
We developed and applied an ecosystem-scale model that calculated leaf CO2 assimilation, stomatal conductance, chloroplast CO2 concentration and the carbon isotope composition of carbohydrate formed during photosynthesis separately for sunlit and shaded leaves within multiple canopy layers. The ecosystem photosynthesis model was validated by comparison to leaf-level gas exchange measurements and estimates of ecosystem-scale photosynthesis from eddy covariance measurements made in a coastal Douglas-fir forest on Vancouver Island. A good agreement was also observed between modelled and measured δ 13C values of ecosystem-respired CO2 ( δ R). The modelled δ R values showed strong responses to variation in photosynthetic photon flux density (PPFD), air temperature, vapour pressure deficit (VPD) and available soil moisture in a manner consistent with leaf-level studies of photosynthetic 13C discrimination. Sensitivity tests were conducted to evaluate the effect of (1) changes in the lag between the time of CO2 fixation and the conversion of organic matter back to CO2; (2) shifts in the proportion of autotrophic and heterotrophic respiration; (3) isotope fractionation during respiration; and (4) environmentally induced changes in mesophyll conductance, on modelled δ R values. Our results indicated that δ R is a good proxy for canopy-level C c/ C a and 13C discrimination during photosynthetic gas exchange, and therefore has several applications in ecosystem physiology.  相似文献   

4.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

5.
Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO2, temperature and precipitation over the last century. Our investigation is based on tree-rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition ( δ 13C), 13CO2 discrimination (Δ13C) and intracellular carbon concentration ( C i ) are also reported. Our results indicate an age effect on Δ13C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope-derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO2. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s.  相似文献   

6.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

7.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

8.
A possible benefit of the presence of the epiphytic bryozoan Electra pilosa (L.) for the red macroalga Gelidium sesquipedale (Clem.) Thuret et Bornet is described. Absorption spectra and photosynthetic parameters of O2 evolution vs. irradiance curves were determined for both epiphytized and nonepiphytized thalli. The absorptance of G. sesquipedale thalli for PAR was not modified by the presence of the epiphyte. Gross photosynthetic rates at saturating light were approximately doubled in epiphytized thalli. Photosynthesis by G. sesquipedale was enhanced when CO2 concentration was increased in the medium by a decrease in pH. On the other hand, an increase in pH from 8.1 to 8.7 produced a significant reduction of the O2 evolution rates indicating that G. sesquipedale has a very low capacity to use HCO3. The decrease in photosynthesis at high pH was higher in nonepiphytized thalli than in epiphytized ones, suggesting that the amount of available CO2 is higher in the presence of E. pilosa. This positive effect was attributed to the CO2 released by respiration of the epiphyte.  相似文献   

9.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

10.
1. There have been no reports of the long-term responses of the desiccation-tolerant (DT) plants to elevated CO2. Xerophyta scabrida is a DT woody shrub, which loses chlorophylls and thylakoids during desiccation: a so-called poikilochlorophyllous desiccation-tolerant species (PDT). When the leaves of X. scabria are allowed to desiccate, the species shows many of the normal features of (P)DT plants.
2. However, the duration of photosynthesis in X. scabria is prolonged by 300% when the measurements are made at 700 as opposed to 350p.p.m. CO2. The implication is that the carboxylating enzymes must still have been active at this time to enable appreciable photosynthetic activity. This response could have far-reaching implications for the success of such species in a future climate.
3. Lichens and mosses, representing the homoiochlorophyllous DTs (HDT), retain their chlorophyll content and photosynthetic apparatus during desiccation. We show the desiccation responses of two common HDT species ( Cladonia convoluta and Tortula ruralis ) to elevated CO2 for comparison. Both HDT species showed increased net CO2 uptake in the material grown at high CO2 by more than 30% in moss and by more than 50% in lichen. It is concluded that desiccation-tolerant plants will be among the main beneficiaries of a high CO2 future.  相似文献   

11.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

12.
1. The photosynthetic response to elevated CO2 and nutrient stress was investigated in Agrostis capillaris, Lolium perenne and Trifolium repens grown in an open-top chamber facility for 2 years under two nutrient regimes. Acclimation was evaluated by measuring the response of light-saturated photosynthesis to changes in the substomatal CO2 concentration.
2. Growth at elevated CO2 resulted in reductions in apparent Rubisco activity in vivo in all three species, which were associated with reductions of total leaf nitrogen content on a unit area basis for A. capillaris and L. perenne . Despite this acclimation, photosynthesis was significantly higher at elevated CO2 for T. repens and A. capillaris , the latter exhibiting the greatest increase of carbon uptake at the lowest nutrient supply.
3. The photosynthetic nitrogen-use efficiency (the rate of carbon assimilation per unit leaf nitrogen) increased at elevated CO2, not purely owing to higher values of photosynthesis at elevated CO2, but also as a result of lower leaf nitrogen contents.
4. Contrary to most previous studies, this investigation indicates that elevated CO2 can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen-use efficiency may be a critical determinant of competition within low nutrient ecosystems and low input agricultural systems.  相似文献   

13.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

14.
A recognized invasive weed, Canada thistle ( Cirsium arvense L. Scop.) was grown at ambient and pre-ambient concentrations of atmospheric carbon dioxide [CO2] (373 and 287 μmol mol−1, respectively) at three levels of supplemental nitrogen (N) (3, 6 and 14.5 m M ) from seeding until flowering [77 days after sowing (DAS)]. The primary objective of the study was to determine if N supply limited the potential photosynthetic and growth response of this species to the increase in atmospheric [CO2] which occurred during the 20th century (i.e. approximately 290 to 370 μmol mol−1 CO2). Leaf photosynthesis increased both as a function of growth [CO2] and N supply during the first 46 DAS. Although by 46 DAS photosynthetic acclimation was observed relative to a common measurement CO2 concentration, there was no interaction with N supply. Both [CO2] and N increased biomass, relative growth rates and leaf area whereas root : shoot ratio was increased by CO2 and decreased by increasing N; however, N supply did not effect the relative response to [CO2] for any measured vegetative parameter up to 77 DAS. Due to the relative stimulation of shoot biomass, total above-ground N increased at elevated [CO2] for all levels of supplemental N, but nitrogen use efficiency (NUE) did not differ as a function of [CO2]. Overall, these data suggest that any potential response to increased atmospheric [CO2] in recent decades for this noxious weedy species was probably not limited by nitrogen supply.  相似文献   

15.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

16.
LIMITATIONS OF PHOTOSYNTHESIS IN DIFFERENT REGIONS OF THE ZEA MAYS LEAF   总被引:3,自引:0,他引:3  
The progressive development of the photosynthetic apparatus occurring along the length of the Zea mays leaf offers a convenient system with which to examine the limitations to photosynthetic CO2 assimilation during biogenesis of a C4 leaf. Changes in light-induced O2 evolution and CO2 assimilation, chlorophyll content, activity of PEP-carboxylase, NADP-malic enzyme and the 'R5P system' (consisting of d -ribose-5-phosphate-keto isomerase, ATP- d -ribulose-5 phosphate 1-phosphotransferase and d -ribulose-1,5-bisphosphate carboxylase) and fluorescence emission characteristics were examined along the length of the second leaf of 7-day-old plants grown under a diurnal light regime. The results suggest that the major limitation to CO2 assimilation in the leaf sheath lies within the chlorenchyma and is either energy supply for carboxylation or the capacity of key photosynthetic enzymes. In the leaf blade stomatal resistance to CO2 diffusion constitutes a major fraction of the total leaf resistance to CO2 assimilation implicating the stoma as the major limiting factor to photosynthetic CO2 assimilation.  相似文献   

17.
We repeatedly sampled the surface mineral soil (0–20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO2) and/or elevated phyto-toxic ozone (O3) on soil carbon (C). After 11 years, there was no significant main effect of CO2 or O3 on soil C. However, within the community containing only aspen ( Populus tremuloides Michx.), elevated CO2 caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO2. In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O3 under elevated CO2 proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO2 and decreased soil C under elevated O3 and should be considered in models simulating the effects of Earth's altered atmosphere.  相似文献   

18.
Water is a key variable driving the composition and productivity of pastures and rangelands, and many of the ecosystems in these grasslands are highly sensitive to changes in water supply. The possibility that elevated CO2 concentrations may alter plant water relations is therefore particularly relevant to pastures and rangelands, and may have important consequences for grassland ecosystem function, water use, carbon storage and nutrient cycling. The planning of effective research to better understand these changes requires attention to both: (i) gaps in knowledge about CO2 and water interactions, and (ii) knowledge of how precisely the effects of CO2 must be understood in relation to other factors, in order to predict changes in grassland structure and production. A recent microcosm experiment illustrates that non-linear effects of CO2 and water stress could perturb primary production by triggering changes in grassland community composition. The magnitudes of the effects of CO2 on key grassland ecosystems remain to be precisely determined through ecosystem-level experiments. A simplified simulation of the impact of different levels of productivity change in a water-limited Australian rangeland system was conducted by varying effects of CO2 on radiation and water use efficiency. The results indicate that direct effects of CO2 may be moderated at the enterprise scale by accompanying changes in adaptive management by farmers. We conclude that future research should aim to construct quantitative relationships and identify thresholds of response for different grassland systems. The sensitivity of these systems to management (such as grazing pressure) should also be considered when developing integrated predictions of future effects of CO2 on water supply to grassland ecosystems.  相似文献   

19.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

20.
The reduction of photosynthetic capacity in many plants grown at elevated CO2 is thought to result from a feedback effect of leaf carbohydrates on gene expression. Carbohydrate feedback at elevated CO2 could result from limitations on carbohydrate utilization at many different points, for example export of triose phosphates from the chloroplast, sucrose synthesis and phloem loading, transport in the phloem, unloading of the phloem at the sinks, or utilization for growth of sinks. To determine the relative importance of leaf versus whole plant level limitations on carbohydrate utilization at elevated CO2, and the possible effects on the regulation of photosynthetic capacity, we constructed a treatment system in which we could expose single, attached, soybean leaflets to CO2 concentrations different from those experienced by the rest of the plant. The single leaflet treatments had dramatic effects on the carbohydrate contents of the treated leaflets. However, photosynthetic capacity and rubisco content were unaffected by the individual leaflet treatment and instead were related to the whole plant CO2 environment, despite the fact that the CO2 environment around the rest of the plant had no significant affect on the total non-structural carbohydrate (TNC) contents of the treated leaflets. These results necessitate a re-evaluation of the response mechanisms to CO2 as well as some of the methods used to test these responses. We propose mechanisms by which sink strength could influence leaf physiology independently of changes in carbohydrate accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号