首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

2.
Andreas Hussner  Rainer Lsch 《Flora》2007,202(8):653-660
Floating Pennywort (Hydrocotyle ranunculoides L. fil.) is a worldwide distributed aquatic plant. The species is native to North America and quite common also in Central and South America. In Europe, Japan and Australia it is known as an alien plant, sometimes causing serious problems for affected ecosystems and human use of water bodies. Starting from Western Europe with an eastwards directed spread, Floating Pennywort was recorded in Germany in 2004 for the first time. Since then, the species spread out and got established in western parts of Central Europe. For a definite prediction of the potential of a further spread, data about biology, in particular growth and photosynthesis are needed. Here, regeneration capacity, growth at different nutrient availabilities and photosynthesis of H. ranunculoides were investigated. In addition biomass samples were taken in the field. Results show an enormous regeneration capacity (e.g., by forming new shoots from small shoot fragments), increasing growth rates under increasing nutrient availability and a maximum increase of biomass reaching 0.132±0.008 g g−1 dw d−1. Dense populations of H. ranunculoides growing in ponds and oxbows were found at high nutrient content of the substrate, the biomass reaching there up to 532.4±14.2 g dw m−2. Gas exchange analysis showed a physiological optimum of H. ranunculoides CO2 uptake at temperatures between 25 and 35 °C and high photon flux densities (PPFD) above 800 μmol photons m−2 s−1. In comparison, native Hydrocotyle vulgaris showed an optimum of net photosynthesis at 20–30 °C and a light saturation of CO2 gas exchange at 350 μmol photons m−2 s−1.  相似文献   

3.
Massive growth of cyanobacteria, known as ‘algal blooms’, has become a major concern for water monitoring. It has been observed that environmental factors like temperature, light, and certain patterns of availability of nutrients such as P, N, Fe influence cyanobacterial proliferation and toxin production. In order to monitor nutrients in aquatic ecosystems, an assay for monitoring phosphorus bioavailability to cyanobacteria was developed. The test consists of an immobilized luminescent reporter strain of Synechococcus PCC 7942, designated APL. The reporter strain harbours the gene coding the reporter protein luciferase from Vibrio harveyi under control of the inducible alkaline phosphatase promoter from Synechococcus PCC 7942, and can be induced under phosphorus limitation. The resultant CyanoSensor detects PO43−−P in a concentration range of 0.3–8 μM after a sample incubation time of 8 h under continuous illumination (50 μE m−2 s−1). The sensor also responded to a variety of organic phosphorus sources and was storable for 3 weeks at 4 °C. It could be demonstrated that the CyanoSensor for bioavailability monitoring is an improvement to conventional phosphorus detection methods.  相似文献   

4.
The potential for nutrient load (30, 100 and 350 g N m−2 per year) to alter plant performance under saline conditions (control, 4.5, 9 and 13 dS m−1) was examined in the sedge Bolboschoenus medianus. Relative growth rates (RGR) across nutrient loadings ranged from 30.2 to 41.8 mg g−1 per day in controls and were reduced to 20.9–28.5 mg g−1 per day by salinities of 13 dS m−1. Whilst higher nutrient loads generally increased RGR, the response was smaller at higher salinities. Responses to salinity and nutrient load were specific. Nutrient load increased the RGR via increases in the leaf area ratio (LAR). The LAR ranged from 1.9 to 2.1 m2 kg−1 across salinity treatments at 30 g N m−2 per year, and increased to 2.5–2.8 m2 kg−1 at 350 g N m−2 per year. Salinity reduced the RGR via a reduction in the net assimilation rate (NAR). The NAR in control plants ranged from 14.7 to 16 g m−2 per day across nutrient loadings and decreased to 11–12 g m−2 per day at 13 dS m−1. Carbon isotope discrimination of leaves decreased by 2–3‰ in response to 13 dS m−1 at the lower nutrient loadings. A prominent response of B. medianus to salinity was a change in biomass allocation from culms to tubers. In contrast, the response to nutrient load was characterised by a shift in biomass allocation from roots to leaves.  相似文献   

5.
Estimation of the ammonia production of the shrimp C. crangon in two littoral ecosystems (oligotrophic sand and eutrophic mud) was determined in winter and summer conditions from laboratory observations in experimental microcosms. The ammonia excretion rate of C. crangon was not influenced by either the sediment type or the ammonia concentration of the overlying water; on the other hand, the mean excretion rate and the response to initial handling stress increased markedly as shrimp were deprived of soft substratum.

The daily ammonia production of C. crangon was 16 μmol NH3 · g −1 wet wt · day −1 in winter and 40 μmol in summer. A gross production of 12 μmol NH3 · m−2 · day −1 and 300–700 μmol μ m−2 · day−1, respectively, could be expected in the two ecosystems studied. This would account for 5% (winter) and 2–4% (summer) of the total NH+4 flux at the sediment-water interface. The contribution of the excretion of all macrofauna to the NH+4 flux from the sediment is discussed.  相似文献   


6.
The biomass of the introduced and invasive alga Caulerpa taxifolia was measured monthly over one year at four different sites along the French Mediterranean coast at depths of 5 and 20 m in a sheltered and an exposed area. At the 5 m depth, C. taxifolia mean biomass ranged from 203 to 518 g dry wt. m−2, while at the 20 m depth, it ranged from 62 to 466 g dry wt. m−2. The study clearly shows that a major characteristic of C. taxifolia is its perennial life cycle with relatively high biomass values throughout the year, in different biotopes. This could be a factor in the broad ecological impact of C. taxifolia.  相似文献   

7.
P. Gast  A. J. Hoff 《BBA》1979,548(3):520-535
In reaction centers and chromatophores of photosynthetic bacteria strong light-induced emissive ESR signals have been found, not only after a flash, but also under continuous illumination. The signal, with g = 2.0048 and ΔHpp = 7.6 G, is only present under reducing conditions in material in which the primary acceptor, ubiquinone, U and its associated high-spin ferrous ion are magnetically uncoupled. Its amplitude under continuous illumination is strongly dependent on light intensity and on microwave power.

The emissive signal is attributed to the prereduced primary acceptor, U, which becomes polarized through transfer of spin polarization by a magnetic exchange interaction with the photoreduced, spin polarized intermediary acceptor, I. A kinetic model is presented which explains the observed dependence of emissivity on light intensity and microwave power. Applying this analysis to the light saturation data, a value of the exchange rate between I and U of 4 · 108 s−1 is derived, corresponding to an exchange interaction of 3–5 G.  相似文献   


8.
Sulfur cycling was examined in sediments inhabited with the isoetids Littorella uniflora and Isoetes lacustris in the oligotrophic soft-water Lake Kalgaard, Denmark. Based on short-term tracer incubations sulfate reduction was measured along a transect from the shore (0.6 m) to profundal sediments (4.6 m). The sulfate reduction rates were low (0.008–0.8 mmol m−2 d−1) in the sandy shallow sediments with low organic content (<1.3 mmol C g−1 sed DW) and high redox potentials (>100 mV), whereas sulfate reduction was higher at the deeper sites (2.7–4.6 mmol m−2 d−1) with high organic content (max. 11.5 mmol C g−1 sed DW) and lower redox potentials (<100 mV). High concentrations of dissolved organic carbon (DOC) were found in the low particulate organic sediments (up to 18.4 mM), and most of the DOC pool consisted of acetate (40–77%). Reoxidation of sulfides due to root oxygen release was probably important at all sites and a positive efflux of sulfate across the sediment–water interface was measured, attaining rates (up to 4.8 mmol m−2 d−1) similar to the sulfate reduction rates. Reoxidation of sulfides was also manifested by high fraction (>80%) of reduced sulfides being accumulated as elemental sulfur or pyrite (chromium reducible sulfur, CRS). The largest pools of CRS were found in high organic sediment with vertical distributions resembling those of the sulfate reduction rates. The overall effect of isoetid growth on sulfur cycling in the rhizosphere is a suppression of sulfate reduction in low organic sediments and the governing of sulfide reoxidation in sediments with higher organic content.  相似文献   

9.
In this paper a number of experiments with the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas capsulata is described in which the total fluorescence yield and/or the total fraction of reaction centers closed after a picosecond laser pulse were measured as a function of the pulse intensity. The conditions were such that the reaction centers were either all in the open or all in the closed state before the pulse arrived. These experiments are analysed using the theoretical formalism discussed in the preceding paper (Den Hollander, W.T.F., Bakker J.G.C., and Van Grondelle, R., Biochim. Biophys. Acta 725, 492–507). From the experimental results the number of connected photosynthetic units, λ, the rate of energy transfer between neighboring antenna molecules, kh, and the rate of trapping by an open reaction center, kot, can be estimated. For R. rubrum it is found that λ = 14−17, kh = (1−2)·1012 s−1 and kot = (4−6)·1011 s−1, for Rps. capsulata λ ≈ 30, kh ≈ 4·1011 s−1 and kot ≈ 3·1011 s−1. The findings are discussed in terms of current models for the structure of the antenna and the kinetic properties of the decay processes occurring in these purple bacteria.  相似文献   

10.
Impatiens capensis 《Flora》2004,199(6):524-530
Leaf transpiration rates of Impatiens capensis were measured beneath a broadleaved deciduous forest canopy over successive growing seasons using a steady-state porometer. The transpiration measurements, which continued into early autumn, provided a framework for assessing whether I. capensis exhibits stomatal opening in response to the autumnal increase in available direct-beam radiation reaching the forest floor. The deciduous canopy LAI (leaf area index) decreased from a growing season maximum of 3.94 m2 m−2, while the understory I. capensis population located along a stream channel maintained LAI values ranging from 0.58 to 1.05 m2 m−2 late into the growing season. Late morning and early afternoon leaf transpiration rates during the months of June and July averaged about 8 μg cm−2 s−1, with a mean stomatal conductance of 0.5 cm s−1. In August, leaf transpiration averaged almost 12 μg cm−2 s−1, with stomatal conductance exceeding 1.5 cm s−1. However, beginning in early to mid-September, before canopy leaf-fall, the persistent green leaves of I. capensis exhibited a sharp decline in transpiration, possibly a result of decreasing vapor pressure deficits or non-lethal physiological damage induced by cold stress. This physiological decline offsets any advantage that could have been gained by the increased exposure to direct-beam radiation after canopy leaf-fall in mid-October. Although green leaf area and seed-bearing capsules may persist until the first frost in October or early November, there is no evidence of stomatal opening suggestive of carbon assimilation for enhanced seed development during this early autumn period. We conclude that the persistent green leaf area of I. capensis fails to exploit the increase in available direct-beam radiation in the final stage of its life cycle.  相似文献   

11.
Effects of soil flooding on photosynthesis and growth of Genipa americana L. seedlings, a neotropical fruit-tree species used in gallery forest restoration programs, were studied under glasshouse conditions. Despite the high survival rate and wide distribution in flood-prone habitats of the neotropics, previous studies demonstrated that growth of G. americana is reduced under soil flooding. Using leaf gas exchange and chlorophyll fluorescence measurements, we tested the hypothesis that stomatal limitation of photosynthesis is the main factor that reduces carbon uptake and growth rates of G. americana seedlings. Throughout a 63-day flooding period, the survival rates were 100%. The maximum values of the net photosynthetic rate (A) and stomatal conductance to water vapor (gs) of control seedlings were 9.86 μmol CO2 m−2 s−1 and 0.525 mol H2O m−2 s−1, respectively. The earliest effects of flooding were significant decreases in gs and A, development of hypertrophied lenticels and decrease in the dry weight of roots. A strong effect of the leaf-to-air vapor pressure deficit (LAVPD) on gs and A were observed that was enhanced under flooded conditions. Between 14 and 63 days after flooding, significant reductions in gs (31.7% of control) and A (52.9% of control) were observed followed by significant increments in non-photochemical quenching (qN) (187.5% of control). During the same period, there were no differences among treatments for the ratio between variable to initial fluorescence (Fv/F0), the maximum quantum efficiency of the photosystem II (Fv/Fm) and photochemical quenching (qP), indicating that there was no damage to the photosynthetic apparatus. Based on the results, we conclude that decreases in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake and whole plant biomass of flooded seedlings.  相似文献   

12.
Photosynthetic features of Zostera marina L. and its autotrophic epiphyte community were investigated in a population inhabiting a shallow (1.3 m depth) water meadow in Great Harbor, Woods Hole, MA (U.S.A.). Photosynthesis versus irradiance (P-I) relationships were measured with respect to leaf age determined by the leaf position in the shoot bundle and by location of the tissue along the leaf axis. Therefore both age and light intensity gradients along the leaf axis were considered. The maximum photosynthesis (Pmax) per dm2 typically increased nearly two-fold along the leaf axis from leaf bases to apices. Photosynthetic rate on a chlorophyll (Chl) basis did not increase as dramatically along the leaf axis, and rates were usually lowest in tissues with the highest Chl content. The P-I relationships of leaves of different ages did not reveal photoinhibition even at light intensities > 1400 μE • m−2 • s −1. Furthermore, no photoinhibition was observed in tissues from leaf blade bases, which never experienced high light levels (> 500 μE • m −2 • s−1) in situ in Great Harbor. The initial slopes of the P-I curves and light compensation and saturation values varied along the leaf axis in relation to in situ light intensity gradients and in relation to leaf or tissue age. It appeared that leaf and/or tissue age was more important than light environment in determining P-I responses. The contribution of the autotrophic epiphyte community on Z. marina leaves to total photosynthesis per dm2 was between 27 and 50%, and between 10 and 44% per mg chlorophyll. These levels of epiphyte photosynthesis can double the primary production of Z. marina leaves. No detrimental effects of epiphyte cover were realized in leaf maximal photosynthesis or P-I relationships. Non-epiphytized leaves and leaves from which epiphytes were removed showed essentially identical photosynthetic features. Light intensity and age gradients along the leaf axis control both the photosynthetic performance of the leaves and epiphyte biomass and photosynthesis.  相似文献   

13.
The effects of different external nitrate concentrations (0 (control), 1, 50, 100, 500, 1000 and 20 000 mmol m−3) on growth, nodulation and nitrate-reductase activity (NRA) of inoculated Neptunia plena (L.) Benth. were examined.

Plants given 500 and 1000 mmol m−3 nitrate had greater (P < 0.05) shoot length, leaf, stem and root dry mass, and carbon and nitrogen contents than the controls and plants given 20 000 mmol m−3 nitrate. Nodule number was not significantly affected by nitrate concentration up to 50 mmol m−3, but 100 mmol m−3 nitrate reduced nodulation by 68% and concentrations above 100 mmol m−3 completely inhibited nodule development. Plants given 100–20000 mmol m−3 nitrate had a greater nitrate content per g leaf, stem and root dry mass (DM) than controls. Nitrate per g root DM did not increase with external nitrate concentration above 500 mmol m−3, but levels in leaf and stem were greater at 20 000 mmol m−3 nitrate than at all other concentrations. NRA per g leaf, stem and root fresh mass (FM) was greater for plants given 500–20000 mmol m−3 than for controls, but there was no significant increase with nitrate concentration above 500 mmol m−3. Substantial proportions of total plant nitrate and NRA were found in both root and shoot over the entire range of external nitrate concentrations given.

Findings for N. plena are compared with data obtained previously for terrestrial legumes.  相似文献   


14.
A novel nutrient removal/waste heat utilization process was simulated using semicontinuous cultures of the thermophilic cyanobacterium Fischerella. Dissolved inorganic carbon (DIC)-enriched cultures, maintained with 10 mg l−1 daily productivity, diurnally varying temperature (from 55°C to 26–28°C), a 12:12 light cycle (200 μE sec−1 m−2) and 50% biomass recycling into heated effluent at the beginning of each light period, removed > 95% of NO3 + NO2−N, 71% of NH3-N, 82% of PO43− −P, and 70% of total P from effluent water samples containing approximately 400 μg l−1 combined N and 60 μg l−1 P. Nutrient removal was not severely impaired by an altered temperature gradient, doubled light intensity, or DIC limitation. Recycling 75% of the biomass at the end of each light period resulted in unimpaired NO3 + NO2 removal, 38–45% P removal and no net NH3 removal. Diurnally varying P removal, averaging 50–60%, and nearly constant > 80% N removal, are therefore projected for a full-scale process with continuous biomass recycling.  相似文献   

15.
When using pulse-amplitude modulated (PAM) fluorometry to measure landscape-scale photosynthetic characteristics, diurnal variations in fluorescence during sampling may confound the assessment of the physiological condition. In this study, two photophysiological assessment techniques: Diurnal Yield and Diurnal Rapid Light Curve (RLC) were investigated in an attempt to incorporate the temporal and spatial scales of sampling into a physiological assessment of Thalassia testudinum in Florida Bay. Photosynthesis–irradiance (P–E) curves were calculated using both methods and the ability of each to predict the relationship between relative electron transport rates and irradiance was assessed. Both methods had limitations in providing consistent estimates of photosynthetic efficiency or capacity. The Diurnal Yield method produced unrealistically high predictions of photosynthetic capacity (relative electron transport rate (rETRmax), 417–1715) and saturation irradiance (Ik, 1045–4681 μmol photons m−2 s−1). In contrast, the Diurnal RLC method generally produced predictions of rETRmax (100–200) and Ik (300–500 μmol photons m−2 s−1) which were similar to average values calculated from each day's RLCs. The Diurnal RLC method was unable to predict photosynthetic efficiency () only when ambient irradiances were continuously >Ik during the sampling period. We believe that with sampling modifications in high-light or shallow environments, such as starting sampling earlier in the morning, extending sampling later in the day, or using the average from each day's RLCs, that the Diurnal RLC method can produce representative estimates of rETRmax, , and Ik, providing a method to characterize seagrass photosynthesis at the landscape-level. The Diurnal RLC method does not negate Diurnal variation but it produces a curve that incorporates the changing ambient light environment into the assessment of seagrass physiological status.  相似文献   

16.
Combined effects of UVB radiation and CO2 concentration on plant reproductive parts have received little attention. We studied morphological and physiological responses of siliquas and seeds of canola (Brassica napus L. cv. 46A65) to UVB and CO2 under four controlled experimental conditions: UVB radiation (4.2 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1) (control); UVB radiation (4.2 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1); no UVB radiation (0 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1); and no UVB radiation (0 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1). UVB radiation affected the outer appearance of siliquas, such as colour, as well as their anatomical structures. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 reduced the size of seeds, which had different surface patterns than those from no UVB radiation. At both CO2 levels, 4.2 kJ m−2 d−1 of UVB decreased net CO2 assimilation (AN) and water use efficiency (WUE), but had no effect on transpiration (E). Elevated CO2 increased AN and WUE, but decreased E, under both UVB conditions. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 decreased chlorophyll fluorescence, total chlorophyll (Chl), Chl a and Chl b, but had no effect on the ratio of Chl a/b and the concentration of UV-screening pigments. Elevated CO2 increased total Chl and the concentration of UV-screening pigments under 4.2 kJ m−2 d−1 of UVB radiation. Neither UVB nor CO2 affected wax content of siliqua surface. Many significant relationships were found between the above-mentioned parameters. This study revealed that UVB radiation exerts an adverse effect on canola siliquas and seeds, and some of the detrimental effects of UVB on these reproductive parts can partially be mitigated by CO2.  相似文献   

17.
Effects of sulfur dioxide on the development of powdery mildew of cucumber   总被引:1,自引:0,他引:1  
Environment is a major factor that does influence host parasite relationships. Air pollution caused by SO2 may directly alter the environment around the plant and pathogen. It is hypothesised that plants may respond differently to foliar pathogens in air polluted environments. To test this hypothesis, effects of intermittent exposures of SO2 at 143, 286 and 571 μg m−3 were investigated on the development of powdery mildew of cucumber (Cucumis sativa) caused by Sphaerotheca fuliginea, using pre-, post- and concomitant-inoculation exposures in closed-top chambers. Sulfur dioxide (except 143 μg m−3) and the fungus acting alone caused chlorosis and/or necrosis, and mildew colonies on leaves, respectively and both reduced the plant growth and yield of cucumber. Fungus colonization was relatively greater on the plants exposed to 143 μg SO2 m−3, but at the higher concentrations, the colonies were greatly suppressed. Gas injury on fungus-infected plants was also less in the other treatments. Conidia of S. fuliginea collected from exposed plants varied in size. Conidial germination was considerably greater at 143 μg SO2 m−3. This concentration also promoted germination of the conidia exposed on glass slides. Higher concentrations (286 and 571 μg m−3), however, suppressed the germination of conidia from exposed plants or exposed on glass slides. The number of fibrosin bodies declined at all the concentrations. Synergistic effects of 143 μg SO2 m−3 and S. fuliginea were recorded on plant growth and yield of cucumber. Sulfur dioxide at 571 μg m−3 and powdery mildew infection had an antagonistic effect on plant growth.  相似文献   

18.
The biomass of epiphytes and seagrasses has been measured in relation to leaf age in three monospecific seagrass stands of Thalassia hemprichii (Ehrenb.) Aschers. in Papua New Guinea. From June 1981 through August 1982, biomass values for epiphytes at the three sites ranged from 5 to 70 g ADW m−2 sediment surface at site 1, from 5 to 14 g ADW m−2 at site 2, and from 3.5 to 7.0 g ADW m−2 at the site 3. Annual mean epiphyte biomass values for the different sites were 1.3 g ADW m−2 leaf surface at site 1, 1.7 g ADW m−2 leaf surface at site 2, and 1.5 g ADW m−2 leaf surface at site 3.

The annual mean standing crop of T. hemprichii leaves was highest at site 1 (103 g ADW m−2. Values for site 2 and site 3 were 60 g ADW m−2 and 41 g ADW m−2, respectively.

Production of epiphytes was calculated in three different ways: firstly, by using biomass values for each specific leaf-age group, with corrections for colonization; secondly, by fitting the biomass values with a specific growth curve; and thirdly, by estimated the rate of biomass accumulation. On an area basis, production of epiphytes on leaves of T. hemprichii ranged from 0.55 to 3.97 g ADW m−2 day−1 at site 1, from 0.17 to 0.73 g ADW m−2 day−1 at site 2, and from 0.24 to 0.68 g ADW m−2 day−1 at site 3.  相似文献   


19.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


20.
Resistance in Cicer bijugum Rech. f. a wild relative of chickpea, to Botrytis grey mould (BGM), caused by Botrytis cinerea Pers., was shown to be associated with high concentrations of maackiain when compared to three susceptible species. The two BGM resistant accessions of C. bijugum contained between 200 and 300 μg maackiain g−1 of foliage whereas the BGM susceptible species C. arietinum, C. echinospermum and C. reticulatum contained less than 70 μg g−1. Furthermore, the concentration of maackiain increased to more than 400 μg g−1 in the resistant wild species after being inoculated with the pathogen whereas no significant increase was recorded in the susceptible species. The germination of spores of Botrytis cinerea, treated with maackiain, was inhibited in a dose dependent manner; less than 10% of spores germinated when treated with 500 μg ml−1. The data indicate that maackiain may be an important component in BGM resistance in the wild chickpea C. bijugum and that the resistance is enhanced in the presence of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号