首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.  相似文献   

2.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists in protein folding with the aid of GroES and ATP. It is believed that GroEL alternates the folding-active rings and that the substrate protein (and GroES) can bind to the open trans-ring only after ATP in the cis-ring is hydrolyzed. However, we found that a substrate protein prebound to the trans-ring remained bound during the first ATP cycle, and this substrate was assisted by GroEL-GroES when the second cycle began. Moreover, a slow ATP-hydrolyzing GroEL mutant (D398A) in the ATP-bound form bound a substrate protein and GroES to the trans-ring. The apparent discrepancy with the results from an earlier study (Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell 97, 325-338) can be explained by the previously unnoticed fact that the ATP-bound form of the D398A mutant exists as a symmetric 1:2 GroEL-GroES complex (the "football"-shaped complex) and that the substrate protein (and GroES) in the medium is incorporated into the complex only after the slow turnover. In light of these results, the current model of the GroEL-GroES reaction cycle via the asymmetric 1:1 GroEL-GroES complex deserves reexamination.  相似文献   

3.
The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.  相似文献   

4.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.  相似文献   

5.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

6.
We investigated the effects of high hydrostatic pressure in the range of 1--3 kilobars on tetradecameric GroEL, heptameric GroES, and the GroEL-GroES complex. Unlike GroEL monomers formed by urea dissociation, which can be reassembled back to the tetradecamer, the pressure-dissociated monomers do not reassemble readily. This indicates an alteration of their native structures, an example of conformational drift. Pressure versus time profiles and kinetics of the dissociation of both GroEL and GroES at fixed pressures were monitored by light scattering. Unlike GroEL, GroES monomers do reassociate readily. Reaction conditions were varied by adding ATP, Mg(2+), ADP, AMP-PNP, and KCl. At any individual pressure, the dissociation process is governed by both thermodynamics and kinetics. This leads to the decrease in the yield of monomers at lower pressures. In the presence of Mg(2+) and KCl, GroEL is stable up to 3 kilobars. The presence of either ATP or ADP but not AMP-PNP leads to GroEL dissociation at lower pressures. Interestingly, the GroEL-GroES complex is very stable in the range of 1--2.5 kilobars. However, the addition of ADP destabilizes the complex, which dissociates completely at 1.5 kilobars. The results are rationalized in terms of different degrees of cooperativity between individual monomers and heptameric rings in the GroEL tetradecamer. Such allosteric interactions leading to the alteration of quaternary structure of GroEL in the absence of chemical denaturants are important in understanding the mechanism of chaperonin-assisted protein folding by the GroEL-GroES system.  相似文献   

7.
The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination.  相似文献   

8.
The chaperonins GroEL and GroES are essential mediators of protein folding. GroEL binds nonnative protein, ATP, and GroES, generating a ternary complex in which protein folding occurs within the cavity capped by GroES (cis-cavity). We determined the crystal structure of the native GroEL-GroES-ADP homolog from Thermus thermophilus, with substrate proteins in the cis-cavity, at 2.8 A resolution. Twenty-four in vivo substrate proteins within the cis-cavity were identified from the crystals. The structure around the cis-cavity, which encapsulates substrate proteins, shows significant differences from that observed for the substrate-free Escherichia coli GroEL-GroES complex. The apical domain around the cis-cavity of the Thermus GroEL-GroES complex exhibits a large deviation from the 7-fold symmetry. As a result, the GroEL-GroES interface differs considerably from the previously reported E. coli GroEL-GroES complex, including a previously unknown contact between GroEL and GroES.  相似文献   

9.
The double ring chaperonin GroEL binds unfolded protein, ATP, and GroES to the same ring, generating the cis ternary complex in which folding occurs within the cavity capped by GroES (cis folding). The functional role of ATP, however, remains unclear since several reports have indicated that ADP and AMPPNP (5'-adenylyl-beta,gamma-imidodiphosphate) are also able to support the formation of the cis ternary complex and the cis folding. To minimize the effect of contaminated ATP and adenylate kinase, we have included hexokinase plus glucose in the reaction mixtures and obtained new results. In ADP and AMPPNP, GroES bound quickly to GroEL but bound very slowly to the GroEL loaded with unfolded rhodanese or malate dehydrogenase. ADP was unable to support the formation of cis ternary complex and cis folding. AMPPNP supported cis folding of malate dehydrogenase to some extent but not cis folding of rhodanese. In the absence of hexokinase, apparent cis folding of rhodanese and malate dehydrogenase was observed in ADP and AMPPNP. Thus, the exclusive role of ATP in generation of the cis ternary complex is now evident.  相似文献   

10.
The chaperonin GroEL is an essential chaperone that assists in protein folding with the aid of GroES and ATP. GroEL forms a double-ring structure, and both rings can bind GroES in the presence of ATP. Recent progress on the GroEL mechanism has revealed the importance of a symmetric 1:2 GroEL:GroES2 complex (the “football”-shaped complex) as a critical intermediate during the functional GroEL cycle. We determined the crystal structure of the football GroEL:GroES2-ATP14 complex from Escherichia coli at 3.8 Å, using a GroEL mutant that is extremely defective in ATP hydrolysis. The overall structure of the football complex resembled the GroES-bound GroEL ring of the asymmetric 1:1 GroEL:GroES complex (the “bullet” complex). However, the two GroES-bound GroEL rings form a modified interface by an ~ 7° rotation about the 7-fold axis. As a result, the inter-ring contacts between the two GroEL rings in the football complex differed from those in the bullet complex. The differences provide a structural basis for the apparently impaired inter-ring negative cooperativity observed in several biochemical analyses.  相似文献   

11.
Two D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) folding intermediate subunits bind with chaperonin 60 (GroEL) to form a stable complex, which can no longer bind with additional GAPDH intermediate subunits, but does bind with one more lysozyme folding intermediate or one chaperonin 10 (GroES) molecule, suggesting that the two GAPDH subunits bind at one end of the GroEL molecule displaying a "half of the sites" binding profile. For lysozyme, GroEL binds with either one or two folding intermediates to form a stable 1:1 or 1:2 complex with one substrate on each end of the GroEL double ring for the latter. The 1:1 complex of GroEL.GroES binds with one lysozyme or one dimeric GAPDH folding intermediate to form a stable ternary complex. Both complexes of GroEL.lysozyme1 and GroEL.GAPDH2 bind with one GroES molecule only at the other end of the GroEL molecule forming a trans ternary complex. According to the stoichiometry of GroEL binding with the GAPDH folding intermediate and the formation of ternary complexes containing GroEL.GAPDH2, it is suggested that the folding intermediate of GAPDH binds, very likely in the dimeric form, with GroEL at one end only.  相似文献   

12.
Small-angle neutron scattering and contrast variation were used to study the solution structure of GroEL and GroEL/GroES chaperonins complexed with a nonnative variant of the polypeptide substrate, subtilisin (PJ9). The subtilisin was 86% deuterated (dPJ9) so that it contrasted sufficiently with the chaperonin, allowing the contrast variation technique to be used to separate the scattering from the two components bound in the complex. Both the native double-ring GroEL and a single-ring mutant were used with dPJ9 bound in a 1:1 stoichiometry per GroEL toroid. This allowed both the position and the shape of dPJ9 in the GroEL/dPJ9 complexes to be determined. A single-ring GroEL/GroES variant complexed with one dPJ9 molecule was used to study the structural changes of dPJ9 in GroEL/GroES/dPJ9 complexes formed with ADP and with ATP. It was found that both the shape and the position of the bound dPJ9 in the GroEL/GroES/dPJ9 complex with ADP were the same as those in the GroEL/dPJ9 complex. However, dPJ9 assumed a more symmetric shape when bound in the GroEL/GroES/dPJ9 complex with ATP. This important observation reflects the relative ability of ATP to promote refolding of protein substrates relative to that of ADP.  相似文献   

13.
The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)2 complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding.  相似文献   

14.
Two heptamer rings of chaperonin GroEL undergo opening-closing conformational transition in the reaction cycle with the aid of GroES and ATP. We introduced Cys into the GroEL subunit at Ala-384 and Ser-509, which are very close between adjacent GroEL subunits in the open heptamer ring but far apart in the closed heptamer ring. The open ring-specific inter-subunit cross-linking between these Cys indicated that the number of rings in open conformation in GroEL was two in ATP (GroELOO), one in ADP (GroELO), and none in the absence of nucleotide. ADP showed an inhibitory effect on ATP-induced generation of GroELOO. The isolated GroELO and GroELOO, which lost any bound nucleotide, could bind GroES to form a bullet-shaped 1:1 GroEL-GroES complex and a football-shaped 1:2 GroEL-GroES complex, respectively, even without the addition of any nucleotide. Substrate protein was unable to form a stable complex with GroELOO and did not stimulate ATPase activity of GroEL. These results favor a model of the GroEL reaction cycle that includes a football complex as a critical intermediate.Chaperonin facilitates the folding of other proteins using the energy of ATP hydrolysis (14). GroEL, an Escherichia coli chaperonin, consists of 14 identical 57-kDa subunits arranged in two heptamer rings. Each ring contains a central open cavity, and the two rings are stacked back-to-back (5). Denatured protein binds to the apical end of the central cavity of the heptamer ring of GroEL (610). In the presence of ATP, a disk-shaped GroES binds to the same apical end as a lid to seal the cavity and generates a chamber. The denatured protein is discharged into the chamber, making this heptamer ring folding-active, where productive folding proceeds (11, 12). After several seconds, the GroES lid is detached from GroEL, and the substrate protein is free to escape into solution.Two heptamer rings of GroEL undergo opening-closing conformational transition, coupled with attachment and detachment of GroES, in the functional cycle (13). In the transition from “closed” to “open” conformation, apical domain of each GroEL subunit in the ring is shifted upward and outward, and the cleft between apical and equatorial domains opens. GroES is associated with the open ring, and two kinds of GroEL-GroES complexes are formed. An asymmetric “bullet”-shaped complex is a 1:1 GroEL-GroES complex in which GroES attached to one of two heptamer rings in GroEL (1416). A symmetric “football”-shaped complex is a 1:2 GroEL-GroES complex in which GroES attached to both heptamer rings of GroEL (1722). The football complex contains two open rings; the bullet complex contains one closed and one open ring, and free GroEL is made up of two closed rings.Previously, we generated the GroEL in which two rings in GroEL were locked in a closed conformation by disulfide cross-link between apical and equatorial domains in the same GroEL subunits (23). This GroEL can bind ATP and denatured protein but fails to process further reaction steps such as ATP hydrolysis, GroES binding, and release of substrate protein. We report here the opposite version; open conformation-specific inter-subunit cross-links were introduced into the GroEL ring. Using this cross-linking as a probe of open conformation, we found that one ring was open in ADP (GroELO), although two rings were open in ATP (GroELOO). The isolated GroELO and GroELOO, which were nucleotide-free, formed a stable bullet and football complex with GroES even in the absence of any nucleotide. These results support a GroEL mechanism that includes a football complex as a critical intermediate.  相似文献   

15.
In the crystal structure of the native GroEL.GroES.substrate protein complex from Thermus thermophilus, one GroEL subunit makes contact with two GroES subunits. One contact is through the H-I helices, and the other is through a novel GXXLE region. The side chain of Leu, in the GXXLE region, forms a hydrophobic cluster with residues of the H helix (Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Masui, R., Murai, N., Yoshida, M., Taguchi, H., and Iwata, S. (2004) Structure (Camb.) 12, 1471-1480). Here, we investigated the functional role of Leu in the GXXLE region, using Escherichia coli GroEL. The results are as follows: (i) cross-linking between introduced cysteines confirmed that the GXXLE region in the E. coli GroEL.GroES complex is also in contact with GroES; (ii) when Leu was replaced by Lys (GroEL(L309K)) or other charged residues, chaperone activity was largely lost; (iii) the GroEL(L309K).substrate complex failed to bind GroES to produce a stable GroEL(L309K).GroES.substrate complex, whereas free GroEL(L309K) bound GroES normally; (iv) the GroEL(L309K).GroES.substrate complex was stabilized with BeF(x), but the substrate protein in the complex was readily digested by protease, indicating that it was not properly encapsulated into the internal cavity of the complex. Thus, conformational communication between the two GroES contact sites, the H helix and the GXXLE region (through Leu(309)), appears to play a critical role in encapsulation of the substrate.  相似文献   

16.
Chaperonins are megadalton ring assemblies that mediate essential ATP-dependent assistance of protein folding to the native state in a variety of cellular compartments, including the mitochondrial matrix, the eukaryotic cytosol, and the bacterial cytoplasm. Structural studies of the bacterial chaperonin, GroEL, both alone and in complex with its co-chaperonin, GroES, have resolved the states of chaperonin that bind and fold non-native polypeptides. Functional studies have resolved the action of ATP binding and hydrolysis in driving the GroEL-GroES machine through its folding-active and binding-active states, respectively. Yet the exact fate of substrate polypeptide during these steps is only poorly understood. For example, while binding involves multivalent interactions between hydrophobic side-chains facing the central cavity of GroEL and exposed hydrophobic surfaces of the non-native protein, the structure of any polypeptide substrate while bound to GroEL remains unknown. It is also unclear whether binding to an open GroEL ring is accompanied by structural changes in the non-native substrate, in particular whether there is an unfolding action. As a polypeptide-bound ring becomes associated with GroES, do the large rigid-body movements of the GroEL apical domains serve as another source of a potential unfolding action? Regarding the encapsulated folding-active state, how does the central cavity itself influence the folding trajectory of a substrate? Finally, how do GroEL and GroES serve, as recently recognized, to assist the folding of substrates too large to be encapsulated inside the machine? Here, such questions are addressed with the findings available to date, and means of further resolving the states of chaperonin-associated polypeptide are discussed.  相似文献   

17.
M K Hayer-Hartl  F Weber    F U Hartl 《The EMBO journal》1996,15(22):6111-6121
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

18.
Although a cis mechanism of GroEL-mediated protein folding, occurring inside a hydrophilic chamber encapsulated by the co-chaperonin GroES, has been well documented, recently the GroEL-GroES-mediated folding of aconitase, a large protein (82 kDa) that could not be encapsulated, was described. This process required GroES binding to the ring opposite the polypeptide (trans) to drive release and productive folding. Here, we have evaluated this mechanism further using trans-only complexes in which GroES is closely tethered to one of the two GroEL rings, blocking polypeptide binding by that ring. In vitro, trans-only folded aconitase with kinetics identical to GroEL-GroES. Surprisingly, trans-only also folded smaller GroEL-GroES-dependent substrates, Rubisco and malate dehydrogenase, but at rates slower than the cis reaction. Remarkably, in vivo, a plasmid encoding a trans-only complex rescued a GroEL-deficient strain, but the colony size was approximately one-tenth that produced by wild-type GroEL-GroES. We conclude that a trans mechanism, involving rounds of binding to an open ring and direct release into the bulk solution, can be generally productive although, where size permits, cis encapsulation supports more efficient folding.  相似文献   

19.
Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.  相似文献   

20.
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号