首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Adsorption isotherms of BSA at the solid-water interfaces have been studied as a function of protein concentration, ionic strength of the medium, pH and temperature using silica, barium sulphate, carbon, alumina, chromium, ion-exchange resins and sephadex as solid interfaces. In most cases, isotherms for adsorption of BSA attained the state of adsorption saturation. In the presence of barium sulphate, carbon and alumina, two types in the isotherms are observed. Adsorption of BSA is affected by change in pH, ionic strength and temperature of the medium. In the presence of metallic chromium, adsorbed BSA molecules are either denatured or negatively adsorbed at the metallic interface. Due to the presence of pores in ion-exchange resins, adsorption of BSA is followed by preferential hydration on resin surfaces in some cases. Sometimes two steps of isotherms are also observed during adsorption of BSA on the solid resins in chloride form. Adsorption of BSA, beta-lactoglobulin, gelatin, myosin and lysozyme is negative on Sephadex surface due to the excess adsorption of water by Sephadex. The negative adsorption is significantly affected in the presence of CaCl2, KSCN, LiCl, Na2SO4, NaI, KCl and urea. The values of absolute amounts of water and protein, simultaneously adsorbed on the surface of different solids, have been evaluated in some cases on critical thermodynamic analysis. The standard free energies (delta G0) of excess positive and negative adsorption of the protein per square meter at the state of monolayer saturation have been calculated using proposed universal scale of thermodynamics. The free energy of adsorption with reference to this state is shown to be strictly comparable to each other. The magnitude of standard free energy of transfer (delta G0B) of one mole of protein or a protein mixture at any type of physiochemical condition and at any type of surface is observed to be 38.5 kJ/mole.  相似文献   

2.
Plasma-polymerized films were formed on flat glass plates using allylamine, acrylic acid, acrolein, and allylcyanide as monomers. Adsorption of (125)I-labeled-proteins such as immunoglobulin G (IgG), its F(ab')(2) and Fc fragments, and human serum albumin (HSA) was measured on these plasma-polymerized (PP) films covering the glass plates and on commercially available polymer plates. The adsorption isotherm followed the Langmuir equation, from which the binding constant and amount of saturation binding were estimated. We found that, in general, a cationic surface had higher affinity for protein adsorption than an anionic surface. Among the surfaces examined, the PP-allylamine surface showed the highest binding capacity (264.2 nmol/m(2)) for F(ab')(2) fragment: it was remarkably high. Of the surfaces examined, the PP-acrylic acid surface showed the lowest binding capacity (12.8 nmol/m(2)) for F(ab')(2) fragment. The PP-acrylic acid surface also indicated the lowest protein binding capacity for IgG (16.5 nmol/m(2)), Fc-IgG (32.4 nmol/m(2)) and HSA (16.7 nmol/m(2)), respectively. These imply that the PP-acrylic acid film is useful to fabricate as a low protein adsorption material which expected to decrease cell adhesion. Results of our investigation indicate that the plasma-polymerization technique is promising for fabrication of a smart NanoBio-interface which can control the protein adsorption on a solid-phase substrate using a suitable monomer such as allylamine for the large adsorption and acrylic acid for the small adsorption.  相似文献   

3.
Simultaneous adsorption of bovine serum albumin (BSA), beta-lactoglobulin and gelatin from aqueous solutions of their ternary mixture to the alumina-water interface has been studied as a function of protein concentration at different values of pH, ionic strength, temperature and weight fraction ratios of proteins. At a fixed weight fraction of beta-lactoglobulin, preferential adsorption (gamma w(lac)) of this protein significantly depends on the amounts of BSA and gelatin present in the solution before adsorption. At higher ranges of protein concentrations, extent of adsorption (gamma w(ser)) of BSA decreases sharply with increase of gamma w(lac) until gamma w(ser) becomes significantly negative, thereby indicating that beta-lactoglobulin and water preferentially adsorbed at the interface are responsible for complete displacement of BSA from the surface. On the other hand, adsorption (gamma w(gel)) of gelatin under similar situation increases mutually with increase in the values of gamma w(lac) in many systems. In few systems, gamma w(gel) also decreases with increase of gamma w(lac) depending upon solution parameters. At pH 5.2, increase of ionic strength and temperature, respectively, increases the extent of adsorption of each protein in the mixture considerably. Extents of adsorption of all proteins are observed to increase when pH is changed from 5.2 to 6.4. The affinities of different proteins in the mixture are expressed in unified scales either in terms of maximum extents of total adsorption or in terms of standard free energies of adsorption of protein mixtures with respect to surface saturation.  相似文献   

4.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

5.
Silica with immobilized polyoxyethyle-neisooctylphenol (SiO2-TX) was investigated as an adsorbent for solid phase extraction of bovine serum albumin (BSA). It was shown that efficient BSA extraction (up to 96%) takes place on SiO2-TX from water solution in the form of its ionic associates with cationic (at pH = 8) and anionic (at pH = 1.5) surfactants.  相似文献   

6.
1. It has been reported that DNase I can be highly purified from pancreas extract by affinity chromatography on a dDNA-Sepharose column under non-digestive conditions. In the present study, the adsorption-elution of other nucleases on the column under non-digestive conditions was studied. 2. All the seven kinds of nucleases tested were adsorbed when applied on a dDNA-Sepharose column under conditions which did not allow the enzymes to hydrolyze the DNA. The non-digestive conditions were as follows. i) For DNase II (pI=10.2), pH 3.0 in the presence of 50 mM sodium sulfate (inhibitor), ii) for micrococcal nuclease (pI=9.6), pH 4.0 in the absence of Ca2+ (activator), iii) for restriction endonucleases Eco RI (pI=5+1), Hind III (pI=5+1), and Bam HI (pI=5+1), pH 4.0 in the presence of 20% glycerol and 0.1% Neopeptone (stabilizers), and iv) for nucleases S1 (pI=5+1) and nuclease P1 (pI=4.5), pH 7.0. At the respective pH's, the enzymes other than nucleases S1 and P1 were cationic so as to exhibit electrostatic attraction to the anionic dDNA-Sepharose. Although S1 and P1 were anionic, they still adsorbed to the column. 3. All the adsorbed nucleases described above were eluted by a concentration gradient of KCl without changing pH. The ionic strengths required for elution were 0.19 for DNase II, 0.53 for micrococcal nuclease, 0.73 for Eco RI, 0.72 for Hind III, 0.37 for Bam HI, 0.17 for P1, and 0.13 for S1. The fact that the ionic strength required for the elution of DNase I (pI=5.0) was 0.39 at pH 4.0 indicates that the former five enzymes except DNase II can be chromatographed with almost the same or higher efficiency than DNase I, because the proteins adsorbed with no-specific affinity could be mostly eluted at lower ionic strength. On the other hand, the fact that nucleases P1 and S1 were adsorbed in spite of electrostatic repulsion suggests that these two enzymes can also be effectively chromatographed, especially when other cationic proteins are previously removed by an appropriate method such as adsorption to a typical cation exchanger.  相似文献   

7.
Cibacron Blue 3GA was immobilized on Sepharose CL-6B to obtain a highly substituted dye-ligand adsorbent which dye concentration was 17.4?μmol dye per gram wet gel. This adsorbent had a highly binding capacity for bovine serum albumin (BSA). The effects of ionic strength on the adsorption and desorption of BSA to the adsorbent were studied. Adsorption isotherms were expressed by the Langmuir model. The quantitative relationships between the model parameters and the ionic strength were obtained. The desorptions were performed by adding salt to the BSA solutions in which adsorption equilibria had been reached. Adding salt to the solution resulted in the desorption of the bound protein. It was found that the isotherm obtained from the desorption experiments agreed well to the isotherm obtained from the adsorption experiments at the same ionic strength. The result demonstrated that the adsorption of BSA to the highly substituted adsorbent was reversible.  相似文献   

8.
This study evaluated an automated immunoassay for bovine lactoferrin (LF) in dairy products based on latex beads coated with F(ab')2 fragments. Methods: F(ab')2 fragments were obtained by pepsin digestion of rabbit anti-bovine LF (IgG fraction) and polystyrene latex beads were coated with the F(ab')2 fragments. We used the beads to develop a rapid and homogeneous light scatter immunoassay employing an autoanalyzer (the Automated Latex assay). The Automated Latex assay was easy to perform and could rapidly determine bovine lactoferrin in lactoferrin-supplemented products. It was sensitive enough for testing products and showed good precision.  相似文献   

9.
Microscope electrophoresis was used to measure the electrophoretic mobility of polystyrene latex particles and bacterial, and mammalian tissue cells. The submicroscopic hydrophilic colloids (gelatin, serum albumin, and staphylococcal enterotoxin B) were adsorbed on latex carrier particles to determine their electrophoretic mobility and the effect of concentration, pH, electrolyte addition, and buffer ionic strength. Mobility curves as a function of pH were established for latex particles at 1 ppm concentration indicating an isoelectric point (IEP) at pH 3.6. The IEP for Escherichia coli B cells was measured at pH 2.8, Serratia marcescens at pH 2.6, Bacillus subtilis var. niger at pH 2.9, and L strain mouse fibroblast cells at pH 4.4. Using an adsorption technique, isoelectric points were measured for proteins: gelatin (acid form) at pH 9.4, serum albumin at pH 4.9, and staphylococcal enterotoxin B at pH 6.3. Procefures for examining electrophoretic characteristics of microscopic and submicroscopic biological particles are described in order to standardize procedures and to generate results applicable to an understanding of parameters influencing concentration and purification of colloidal biological particles.  相似文献   

10.
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.  相似文献   

12.
To obtain a more efficient purification process for antibody fragments from an Escherichia coli homogenate, the precipitant, Ethodin (6,9-diamino-2-ethoxyacridine lactate) was introduced to the homogenate. By adding the precipitant a drastic reduction of host cell protein was obtained. The majority of the proteins were recovered in a precipitate with the cell debris, while the antibody or antibody-fragment was recovered in the clarified supernatant. In addition, DNA was also efficiently precipitated when using Ethodin as a precipitation agent. The improved purity of the clarified extract obtained by using the precipitant allows for the use of smaller chromatography columns and may reduce the number of chromatographic steps required in the recovery process. The effect of Ethodin concentration, pH, temperature, and conductivity were investigated. The investigation was performed on two different antibody-fragments, e.g., F(ab')(2) molecules and a full-length antibody produced in E. coli. The two F(ab')(2) proteins were F(ab')(2)A and F(ab')(2)B, which have a similar molecular mass (100 kDa) but different isoelectric points (pIs), i.e., 8.9 and 7.5, respectively. The full-length antibody, Ab (the full IgG form of F(ab')(2)B) has a pI of 7.8 and molecular mass of 150 kDa. The investigation showed that the highest purification factors were obtained at neutral pH, low conductivity, and Ethodin concentrations of 0.6%.  相似文献   

13.
研究了Bt库斯塔克亚种(kurstaki)毒素(65 kDa)在高岭土、针铁矿和氧化硅表面的吸附和解吸特性.结果表明:在磷酸盐缓冲体系(pH 8)中,3种矿物的等温吸附曲线均符合Langmuir方程(R2>0.9661),它们对Bt毒素的吸附顺序为:针铁矿﹥高岭土﹥二氧化硅.矿物对Bt毒素的吸附1 h就基本达到了吸附平衡.在pH 6~8范围内,针铁矿、高岭土和二氧化硅对Bt毒素的吸附量随pH值的升高而降低.10 ℃~50 ℃范围内,针铁矿和氧化硅对Bt毒素吸附量随温度升高有所下降(8.39%和47.06%),高岭土对Bt毒素吸附则略有升高(5.91%).红外光谱分析显示,Bt毒素被矿物吸附后结构仅有微小变化.被矿物吸附的Bt毒素不易被去离子水解吸,水洗3次总解吸率为28.48%~42.04%.  相似文献   

14.
The effect of surface properties on the adsorption of bovine gamma-globulin, a model protein for antibody, was studied. Polystyrene latex (PS), hydrophilic copolymer lattices of styrene/2-hydroxyethyl methacrylate [P(S/HEMA)], styrene/ methacrylic acid [P(S/MAA)] and methyl methacrylate/ 2-hydroxyethyl methacrylate [P(MMA/HEMA)], and colloidal silica were used. The adsorption isotherms of gamma-globulin on these colloidal particles were measured as a function of pH and ionic strength. The hydrophilic particles showed low affinities for gamma-globulin at alkaline pH, while PS showed high affinities for gamma-globulin over the whole range of pH and ionic strength. The gamma-globulin adsorption on hydrophilic particles was highly reversible with respect to the pH and ionic strength compared with that on PS. These differences indicate that the dominant driving forces of adsorption are related to the hydrophilicity of particles. The adsorption isotherms of all colloidal particles showed the plateau values, and the order of maximum values of plateau adsorption was P(S/MAA) > PS or P(S/HEMA), silica > P(MMA/HEMA). Thus, they were also affected by the charged groups and the hydrophilicity of the surfaces. On the other hand, the plateau values of all colloidal particles were more or less symmetrical with a maximum at around the isoelectric point of gamma-globulin at an ionic strength of 0.01. This behavior is attributed to the important role of the lateral interaction between the adsorbed molecules at low ionic strength.  相似文献   

15.
Adsorption of BSA on QAE-dextran: equilibria   总被引:1,自引:0,他引:1  
Equilibrium isotherms for adsorption of bovine serum albumin (BSA) on a strong-base (QAE) dextran-type ion exchanger have been determined experimentally. They were not affected by the initial concentration of BSA but were affected by pH considerably. They were correlated by the Langmuir equation when pH >/= 5.05 and by the Freundlich equation of pH 4.8, which is close to pl approximately 4.8 of BSA. The contribution of ion exchange to adsorption of BSA on the ion exchanger was determined experimentally. The maximum amounts of inorganic anion exchanged for BSA were 1% and 0.4% of the exchange capacity of the ion exchanger at pH 6.9, respectively. Since the effect of the ion exchange on the adsorption appeared small, BSA may be adsorbed mainly by electrostatic attraction when pH >/= 5.05 and by hydrophobic interaction or hydrogen bonding at pH 4.8. When NaCl coexisted in the solution, the shape of the isotherm was similar to the Langmuir isotherm, but it is shifted to the right. When the concentration of NaCl was 0.2 mol/dm(3), BsA was not adsorbed on the resin. When BSA was dissolved in pure water, the saturation capacity of BSA on HPO(4) (2-),-orm resin was about 2 times larger than that for adsorption from the solution with buffer (pH 6.9 and 8.79). The saturation capacity for adsorption of BSA in pure water on HPO(4) (2-) + H(2)O(4) (-)-from resin was much smaller than that from the solution with buffer. The isotherms for univalent Cl(-)-and H(2)PO(4) (-)-form resin was peculiar; that is, the amount of BSA adsorbed decreased with increasing the liquid-phase equilibrium concentration of BSA. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
Extent of adsorption of proteins at alumina-water interface from solutions containing binary mixture of beta-lactoglobulin and bovine serum albumin (BSA), beta-lactoglobulin and gelatin, and gelatin and bovine serum albumin has been estimated as functions of protein concentrations at varying pH, ionic strength, temperature and weight fraction ratios of protein mixture. The extent of adsorption (gamma lacw) of lactoglobulin in the presence of BSA increases with increase of protein concentration (Clac) until it reaches a maximum but a fixed value gamma lacw(m). Extent of adsorption gamma serw also initially increases with increase of protein concentrations until it reaches maximum value gamma serw(m). Beyond these protein concentrations, adsorbed BSA is gradually desorbed due to the preferential adsorption of lactoglobulin from the protein mixture. In many systems, gamma serw at high protein concentrations even becomes negative due to the strong competition of BSA and water for binding to the surface sites in the presence of lactoglobulin. For lactoglobulin-gelatin mixtures, adsorption of both proteins is enhanced as protein concentration is increased until limiting values for adsorption are reached. Beyond the limiting value, lactoglobulin is further accumulated at the interface without limit when protein concentration is high. For gelatin-albumin mixtures, extent of gelatin adsorption increases with increase in the adsorption of BSA. The limit for saturation of adsorption for gelatin is not reached for many systems. At acid pH, adsorbed BSA appears to be desorbed from the surface in the presence of gelatin. From the results thus obtained the role of electrostatic and hydrophobic effects in controlling the adsorption process has been analysed.  相似文献   

17.
The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.  相似文献   

18.
Modified polystyrene latexes with high adsorption capacity, comparable to that of latexes produced by Difco Laboratories (USA), have been developed in the USSR. Diagnostic latex preparations for the detection of meningococci of serogroups A, C, Y and Haemophilus influenza, type b, prepared on the basis of these new latexes, have shown high specificity and sensitivity in experimental and clinical tests.The latex preparations for the detection of serogroup B meningococci requires further improvement. The use of latex preparations, together with other laboratory methods, in the diagnosis of meningococcal infection has promoted the etiological confirmation of the disease in 84% of cases; this method has proved to be 1.5 times more effective than the bacteriological one and not less sensitive than the enzyme immunoassay, while being more specific.  相似文献   

19.
Chymotrypsin is specifically adsorbed at low ionic strength and alkaline pH to hydroxyalkyl methacrylate gels with N-benzyloxycarbonylglycl-D-phenylalanine or N-benzyloxycarbonylglycyl-D-leucine attached through 1,6-hexanediamine. Chymotrypsin is not adsorbed either to the unmodified gel (Spheron) or to the gel with attached, 1,6-hexanediamine (NH2-Spheron). The adsorption of chymotrypsin to Z-Gly-D-Phe-NH2-Spheron was investigated as a function of pH and ionic strength. Trypsin is not adsorbed to this gel. Chymotrypsin isolated from a crude pancreatic extract by affinity chromatography on Z-Gly-D-Phe-NH2-Spheron had the same activity as the enzyme isolated on a column of Spheron, to which the naturally-occurring trypsin inhibitor had been coupled.  相似文献   

20.
In an effort to model the interaction of lipid-based DNA delivery systems with anionic surfaces, such as a cell membrane, we have utilized microelectrophoresis to characterize how electrokinetic measurements can provide information on surface charge and binding characteristics. We have established that cationic lipids, specifically N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC), incorporated into liposomes prepared with 1, 2-dioleoyl-i-glycero-3-phosphoethanolamine (DOPE) or 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 50 mol%, change the inherent electrophoretic mobility of anionic latex polystyrene beads. Self-assembling lipid-DNA particles (LDPs), prepared at various cationic lipid to negative DNA phosphate charge ratios, effected no changes in bead mobility when the LDP charge ratio (+/-) was equal to or less than 1. Increasing the LDP concentration in a solution of 0.1% (w/v) anionic beads resulted in a charge reversal effect when a net charge of LDP to total bead charge ratio (+/-) of 1:1 was observed. LDP formulations, utilizing either DOPE or DOPC, showed similar titration profiles with a charge reversal observed at a 1:1 net LDP to bead charge ratio (+/-). It was confirmed through centrifugation studies that the DNA in the LDP was associated with the anionic latex beads through electrostatic interactions. LDP binding, rather than the binding of dissociated cationic lipids, resulted in the observed electrophoretic mobility changes of the anionic latex beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号