首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Zooplankton abundance and community structures were studied in three west Spitsbergen fjords at the beginning of the warm phase, which seem to have entered in 2006. Sampling was conducted in summer 2007 at stations distributed along transects in Hornsund, Isfjorden and Kongsfjorden. Variations in zooplankton standing stocks and community structures (assessing taxonomic diversity and zoogeographical affiliations) were analysed in relation to the environmental variables using multivariate techniques. The hydrographic conditions in Hornsund were influenced by the cold Arctic Water, whereas those in Isfjorden and especially in Kongsfjorden were, to a greater extent, under the influence of the warm Atlantic Water. High abundances of both meroplankton and holoplankton organisms were observed in Kongsfjorden, with high contributions of boreal and ubiquitous species (Calanus finmarchicus and Oithona similis, respectively). In Hornsund at the same time, the zooplankton consisted mainly of boreo-Arctic and Arctic species, the abundances of which were comparable along the West Spitsbergen Shelf. Our results indicate that the difference in hydrography had measurable effects on the zooplankton community in the study area. Furthermore, by comparing regions of contrasting oceanographic conditions, we present evidence as to how the zooplankton structure will change in the Arctic ecosystems if the warming trends continue to operate with the same dynamics. The advection of Atlantic waters to the Arctic seas may lead to changes in zooplankton structure, with increased abundance and contributions of boreal and small ubiquitous species. The ‘warmer Arctic fjords’ scenarios may also induce more rapid development of both holoplankton and meroplankton populations and, consequently, modify the trophic interactions in plankton communities.  相似文献   

2.
Quantitative zooplankton samples were obtained monthly or bi-monthly 15 times from June 1974 to May 1975 at three stations in lower Delaware Bay. Two 12-hour cruises were also conducted at one of the stations.Arthropods dominated the samples in terms of number of species and number of individuals. The number of zooplankton from surface samples ranged from 58/m3 in August to 21,092/ m3 in June, while bottom samples varied from 259/m3 in August to 30,395/ m3 in October. In general, larger concentrations of individuals were found in bottom samples.Only on three occasions did meroplankton exceed the holoplankton, and these occurred at the shallow water stations. Meroplankton comprised a larger percentage of the bottom samples than surface samples. Zoeae of Neopanope sayi and Uca sp. contributed mainly to the large proportion of meroplankton in July 1974, veligers of Mytilus edulis in January 1975, and nauplii of Balanus sp. in May 1975.Copepods were the largest component of the population throughout most of the year. At all stations and depths, Arctica tonsa dominated most of the summer samples. In the spring of 1975, A. tonsa was replaced by Centropages hamatus, Temora longicornis, and Pseudocalanus minutus.During the 12-hour cruises there were higher numbers of individuals in the bottom waters in the day with migration to surface waters in the afternoon and evening. Based on cluster analysis, five time-related assemblages were discerned: June, July–August, September–November, December, January–May. Comparison of Delaware Bay zooplankton with other estuarine systems indicated that the densities obtained locally were most similar to those reported in the York River, Virginia.  相似文献   

3.
Zooplankton composition and distribution off the coast of Galicia, Spain   总被引:3,自引:0,他引:3  
During June and September 1984, zooplankton samples were collectedwith other hydrographic and biological data along the Galiciancoast (NW of Spain). In June copepods contributed {small tilde}60%to the total zooplankton community, with larvaceans, siphonophoresand cladocerans also abundant. In September >90% of the zooplanktonsampled were copepods. The dominant species of copepods in bothJune and September were Acartia clausi, Paracalanus parvus andTemora longicornis. The meroplankton was dominated by echinoderms,bryozoans, barnacle larvae and bivalve larvae. In June the averagezooplankton biomass was 31.08 mg C m–3; the Septemberaverage was 41.69 mg C m–3. The relationship between theslopes of the regression equations (biomass versus abundance)suggests that the zooplankton assemblage in June was composedby larger animals than in September. The major concentrationof zooplankton was between 0 and 50 m, with both June and Septemberdaytime surface samples having 6–7 times the amount oforganisms than the lower water column (50–100 m). Therewere no distinct differences in total zooplankton abundancesat the inshore and offshore stations; however, the inshore stationsoften had a higher percentage of meroplankton than the offshorestations. In June zooplankton abundance at the northern transectsand the western transects was similar. In September there weregreater concentrations of zooplankton in the western Galicianshelf as compared with the northern shelf. These differencesin the horizontal distribution of the zooplankton were relatedto upwelling events.  相似文献   

4.
The Arctic system is one of the regions most influenced by ongoing global climate change, but there are still critical gaps in our knowledge regarding a substantial number of biological processes. This is especially true for processes taking place during the Arctic winter but also for seasonal processes, such as the dynamics of intra-annual meroplankton occurrence. Here, we report on a 1-year study of meroplankton seasonal variability from a fjordic system in the Arctic Archipelago of Svalbard. The study combines an examination of phytoplankton, zooplankton, and hard bottom benthic settlement with measurements of environmental parameters (e.g., water temperature, particulate organic matter, and dissolved organic carbon). Samples were taken on a bi-weekly or monthly basis, and a total of 11 taxa representing six phyla of meroplankton were recorded over a 1-year period from January to December 2007. The occurrence of benthic larvae varied between the seasons, reaching a maximum in both abundance and taxon richness in late spring through early summer. Meroplanktonic larvae were absent in winter. However, settlement of benthic organisms was also recorded during the winter months (February and March), which indicates individual trade-offs related to timing of reproduction and competition. In addition, it suggests that these larvae are not relying on higher summer nutrient concentrations, but instead are dependent on alternative food sources. In parallel with meroplankton abundance, all other measured parameters, both biological (e.g., phyto- and zooplankton abundance and diversity) and physical (e.g., particulate organic matter), exhibited seasonal variability with peaks in the warmer months of the year.  相似文献   

5.
Within the framework of the international research project MELMARINA, seasonal dynamics of plankton communities in three North African coastal lagoons (Merja Zerga, Ghar El Melh, and Lake Manzala) were investigated. The sampling period extended from July 2003 to September 2004 with the aim of evaluating hydrological and other influences on the structure, composition and space-time development of these communities in each lagoon. Phytoplankton in Merja Zerga showed a quasi-permanent predominance of marine diatoms in the open sea station and in the marine inlet channel. Dinoflagellates were abundant in summer and early autumn in the marine inlet and extended into the central lagoon station. In Ghar El Melh, marine species (especially diatoms and dinoflagellates) dominated despite occasional winter inflows of freshwater. In Lake Manzala, freshwater species generally predominated and the planktonic communities were comparatively very diverse. Chlorophyceae contributed 39% of the total species recorded and diatoms and cyanophyceans were also common; the Dinophyceae, Euglenophyceae, Chrysophyceae and Cryptophyceae less so. Zooplankton communities in both Ghar El Melh and Merja Zerga were dominated by marine copepods. Rotifera, Copepoda, Ostracoda, and Cladocera were recorded in both lagoons as were meroplanktonic larvae of Polychaeta, Cirripedia, Mysidacea and Gastropoda and free living nematodes. Ghar El Melh was the more productive of these two lagoons with spring and early summer being the productive seasons. Zooplankton communities in Lake Manzala were generally dominated by rotifers and highest zooplankton abundances occurred in April (2003). Sampling stations near the marine inlets showed the highest diversity and the zooplankton communities showed considerable spatial variation within this large lagoon. The three lagoons represent very different water bodies contrasted strongly in terms of tidal effects and freshwater availability. Yet, there are some similarities in ecosystem structure. Space-time development of the plankton communities was similar especially in Merja Zerga and Ghar El Melh. Species abundances and specific diversities indicated that seasonal changes in salinity and nutrient concentrations were the main influential factors. Lake Manzala was the most productive lagoon and all the three sites supported toxic algal species. Relatively low plankton biomass in Merja Zerga and Ghar El Melh probably resulted from a combination of factors including highly episodic nutrient inputs, light suppression (by turbidity) and nutrient competition with benthic algae. Water quality variables were largely driven by the hydrological regime specific to each lagoon. Nutrient enrichment and, particularly for Lake Manzala, sea level rise threaten the sustainability of the planktonic ecosystems in all three lagoons. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: J. R. Thompson & R. J. Flower Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons  相似文献   

6.
Bollens  Stephen M.  Cordell  Jeffery R.  Avent  Sean  Hooff  Rian 《Hydrobiologia》2002,480(1-3):87-110
Invasions of aquatic habitats by non-indigenous species (NIS), including zooplankton, are occurring at an alarming rate and are causing global concern. Although hundreds of such invasions have now been documented, surprisingly little is known about the basic biology and ecology of these invaders in their new habitats. Here we provide an overview of the published literature on NIS zooplankton, separated by life history (holoplankton vs. meroplankton), habitat (marine, estuarine, freshwater), and biological level of organization or topic (e.g. distribution and range extension, physiology, behavior, feeding, community impacts, ecosystem dynamics, etc). Amongst the many findings generated by our literature search, perhaps the most striking is the paucity of studies on community and ecosystem level impacts of NIS zooplankton, especially in marine and estuarine systems. We also present some results from two ongoing studies of invasive zooplankton in the northeast Pacific Ocean – Pseudodiaptomus inopinus in Washington and Oregon coastal estuaries, and Tortanus dextrilobatus in San Francisco Bay. Both of these Asian copepods have recently expanded their range and can at times be extremely abundant (103 m–3). We also examine some aspects of the trophic (predator–prey) ecology of these two invasive copepods, and find that they are likely to be important in the flow of material and energy in the systems in which they now pervade, although their impacts at the ecosystem level remain to be quantified. Finally, the findings of both our literature search and our two case studies of invasive zooplankton lead us to make several recommendations for future research.  相似文献   

7.
During experiments in a south Norwegian fjord in March and April1979, distribution and development of zooplankton were investigatedin detail. Numbers of protozooplankton, meroplankton and holoplanktonwere determined as individual species. Strong water exchangecaused a high variability in plankton composition and biomass.Changes in salinity and temperature as well as numbers of planktonindividuals and in the percentage composition of the developmentalstages of the spring spawning Calanus finmarchicus revealedthat a wind-induced inflow of Skagerrak water along the southwestNorwegian coast also entered the Rosfjord. In contrast to theAtlantic water with low numbers of copepods from the hibernatinggeneration, in the Skagerrak water the spring generation ofC.finmarchicus had already developed up to the first and secondcopepodite stages. The Skagerrak water was already very richin phyto- and zooplankton organisms. Here, an increase in biomassover time mainly resulted from the development of younger toolder copepodite stages and from a considerable increase innumbers of the tintinnid, Leprotintinnus pellucidus. The verticaldistribution of plankton organisms and fecal pellets was closelyassociated with the occurrence and the stratification of watermasses coming into the Rosfjord.  相似文献   

8.
Patterns and mechanisms of plankton crustacean seasonal succession in the eutrophic freshwater Curonian lagoon (south-eastern Baltic Sea) were analysed on the basis of four-year (1995, 1996, 1998 and 1999) field sampling results. The seasonal crustacean zooplankton succession in the lagoon appears to be the consistent six-stage sequence of four distinct species complexes. Each stage is characterised by its individual species composition and quantitative characteristics. The uniform and periodic pattern of the limnetic zooplankton crustacean successional stages in the lagoon indicates that the seasonal succession of the limnetic zooplankton is not disturbed by unpredictable environmental fluctuations, such as brackish water inflows. Seasonal zooplankton succession is also comparatively uniform at a spatial scale. Not more than two adjacent successional stages were found across the northern part of the lagoon during each of 11 seasonal surveys. Comparison between monthly water residence time and dominant plankton crustacean species life cycle duration points to a more transitory plankton community in spring while in the summer it is not much influenced by lagoon hydrodynamics. Consequently, the Curonian lagoon crustacean community quite closely follows the Plankton Ecology Group (PEG)-described freshwater lake seasonal succession in summer and turns into a lentic-like system in spring and autumn.  相似文献   

9.
The indices of the zooplankton of various waterbodies and watercourses of the Great Lakes Depression (Mongolia) are analyzed. The maximum quantity of zooplankton is registered in freshwater bodies. Irrespective of the waterbody type, the greatest number and biomass of zooplankton are recorded in the littoral zone, where communities are characterized by a high abundance of rotifers, including the indicator species of eutrophic waters. This indicates a high degree of organic load from the catchment area. In comparison with the data obtained by the end of 1970s, the zooplankton biomass decreased with a concomitant increases in the shares of rotifers and cladocerans. These changes are most pronounced in the freshwater ecosystem. The quantitative development of the zooplankton of watercourses depends on the character of the river head, the location of sampling stations along the watercourse’s channel, and the water current velocity.  相似文献   

10.
From March to July 1989 (JGOFS pilot study), measurements were carried out on the oxygen uptake of natural zooplankton communities on five drifting stations (about three weeks each) in the Atlantic from 18°N to 72°N after a method of Martens (1986). The weight specific respiration rate decreased from south to north parallel to the water temperature, whereas the amount of mesozooplankton increased. No significant differences in the oxygen uptake of the zooplankton community between the five stations could be found. A rough estimate showed that less than 2% of the phytoplankton carbon was assimilated by the mesozooplankton per day. This is thought to reflect a typical spring situation. The weight specific respiration rate is influenced significantly by the water temperature and the mean length of the zooplankter.  相似文献   

11.
为探究水洼与邻近浅滩中浮游动物群落是否存在差异, 于2015年1月22日和3月1日, 选择赣江南昌段的3个水洼和邻近浅滩采集浮游动物, 对浮游动物的物种组成、密度、生物量、多样性指数和群落结构进行比较研究。通过单因子方差分析(One-way ANOVA)检验水洼与浅滩中水环境因子及浮游动物密度和生物量的差异。使用非度量多维尺度分析(Non-metric multi-dimensional scaling, NMDS)和群落相似性分析(Analysis of similarity, ANOSIM)对暂时性水洼及邻近浅滩的浮游动物群落进行排序。1月和3月共发现浮游动物44种, 轮虫有30种, 占总捕获数的68%。枝角类和桡足类各有7种, 分别占总捕获数的16%。相对重要性指数(Index of relative importance, IRI)大于1000的优势物种有5种, 分别为汤匙华哲水蚤Sinocalanus dorrii、长肢多肢轮虫Polyarthra dolichoptera、桡足类无节幼体Copepod nauplii、角突臂尾轮虫Brachionus angularis和长圆疣毛轮虫Synchaeta oblonga。单因子方差分析表明, 1月份水洼的水深、电导率和总氮含量显著高于浅滩(P<0.05), 浅滩的水温、pH、溶解氧、浊度和总磷含量略高于水洼。3月份水洼的水深、pH和总氮含量略高于浅滩, 浅滩的溶解氧、浊度和总磷含量较水洼高, 水温和电导率在2种水体中非常接近。1月份水洼中浮游动物的密度(7.90 ind./L)和生物量(7.78 μg/L)均低于浅滩(9.34 ind./L, 19.03 μg/L), 3月份水洼中浮游动物的密度(24.27 ind./L)和生物量(332.14 μg/L)均高于浅滩(22.86 ind./L, 146.10 μg/L)。浅滩中浮游动物的多样性指数(H′)、均匀度指数(J)和物种丰富度指数(D)均大于水洼。非度量多维尺度分析和群落相似性分析表明, 仅1月份水洼与浅滩的浮游动物群落结构具有边缘显著差异(P=0.067), 可大致划分为2个: 水洼群落和浅滩群落。3月份由于水位上涨, 研究的水洼与赣江河道处于连通或半连通状态, 2种生境中浮游动物群落结构无显著差异(P=0.313)。斯皮尔曼相关分析(Spearman correlation coefficient)发现水深和溶解氧是导致水洼和浅滩中浮游动物密度差异的主要环境因子。2种生境中浮游动物的密度与pH、电导率、总氮和总磷均具有显著相关性(P<0.05)。  相似文献   

12.
Zooplankton constitutes a sensitive tool for monitoring environmental changes in coastal lagoons; however, the available information on zooplankton communities is not sufficient to optimize their rational management. The relationships between zooplankton distribution and environmental factors were studied in a tropical lagoon to test whether the indicator properties of zooplankton assemblages could be used to monitor water quality, in a context of expected eutrophication provoked by an increasing anthropogenic activity. Twenty-one (21) stations were sampled monthly from January to December 2004. The community was composed of 65 taxa including Copepoda, Rotifera, and Cladocera. Copepoda was the most abundant group (81% of total numbers). The main zooplankton species were Oithona brevicornis, Acartia clausi, and Brachionus plicatilis. The highest zooplankton abundance (171–175 ind. l−1) was recorded during the long, dry season (February–April) and the lowest (40–45 ind. l−1) during the rainy and the flood periods (June–July). At a spatial level, the lowest abundance was observed in the estuarine zone. During the dry seasons (December–April and August–September), marine zooplankton taxa were abundant near the channel of Grand-Lahou, and brackish water taxa dominated in the other sites. Multivariate analyses (Co-inertia) showed that the composition of zooplanktonic communities and their spatio-temporal variations were mainly controlled by salinity variations closely linked to the climatic and hydrological context. The role of the trophic state on zooplankton communities could not be clearly evidenced. Our results and a comparison with previous studies in the neighboring, highly polluted Ebrié Lagoon suggest that the ratio between Oithona and Acartia abundance could be used as biological indicator for the water quality. Handling editor: S. I. Dodson  相似文献   

13.
烟台四十里湾浮游动物群落特征及与环境因子的关系   总被引:3,自引:0,他引:3  
2009年3月—2010年12月在烟台四十里湾海域对浮游动物群落结构及其环境因子进行了连续20个航次的综合调查,记录到浮游动物8大类共计64种(类)。浮游动物主要类群为桡足类和浮游幼虫,分别发现22种、18类,占总种(类)数34%、28%;其次为水螅水母类,发现13种,占20%;毛颚动物和栉水母类各发现1种。浮游动物的优势种为中华哲水蚤(Y=0.183)、腹针胸刺水蚤(Y=0.078)、强壮箭虫(Y=0.078)和洪氏纺锤水蚤(Y=0.026)。浮游动物的生态类型主要为温带近岸种和广布性种。四十里湾海域浮游动物群落结构的季节变化较为明显,春、夏、秋、冬四季之间群落结构有显著性差异(P0.05),同一季节内群落结构相似度较高,达55%以上。浮游动物丰度中位值在5月份达到最高(546.3个/m~3);种类数、多样性指数中位值均在8月达到最高,分别为18种、3.20;浮游动物生物量呈现出双峰变化模型,5月份达到第1峰值(中位值870.4 mg/m~3),10月份为第2峰值(中位值362.0 mg/m~3)。浮游动物种类数高值区主要分布在养马岛北部海域,而丰度高值区主要分布在近岸尤其是辛安河口海域。浮游动物种类数及多样性指数与水温、化学需氧量、硅酸盐显著正相关(P0.01),与盐度、溶解氧、无机氮显著负相关(P0.01);水温和盐度是影响浮游动物分布的主要环境因子,其次是硅酸盐、叶绿素a和化学需氧量,活性磷酸盐、溶解氧、透明度以及无机氮对浮游动物分布的影响较小。  相似文献   

14.
A survey on the aquatic ecology of Muni Lagoon was carried out during the period December 1993 to July 1994. Samples of zooplankton, aufwuchs and benthos were taken from a number of stations, representative of the different habitat types that occurred in the lagoon. The aquatic invertebrate fauna of the lagoon is listed and the temporal and spatial distribution of the fauna is described. The fauna is depauperate and biodiversity was related closely to the hydrology and salinity of the lagoon waters. During the early part of the study period, with dry weather conditions, there was very little macro-invertebrate life within the waters of the lagoon. The invertebrate fauna was confined to crabs, which occupied the fringing vegetation in the southernmost portions of the lagoon. With the onset of rains and the flooding of the lagoon, the sand bar separating the lagoon from the sea was opened turning the lagoon into a tidal system. This event brought a radical change to the fauna of the lagoon with very diverse marine zooplankton in some stations. Within weeks, worms and juvenile crabs were found several kilometres inland from the sea opening, an indication of the rapid re-colonisation of a previously hypersaline environment. The anthropogenic threats to the aquatic portion of this Ramsar site have been assessed and prioritised.  相似文献   

15.
The Imboassica lagoon, located in the Municipality of Macaé (RJ), is separated from the sea by a sand bar, and its surroundings are partially occupied by residential areas. This coastal lagoon has undergone environmental degradation due to sewage input and artificial sand bar openings. The temporal and spatial variation of environmental variables and zooplankton were studied monthly for four years. There were five artificial openings of the sand bar during the period of study, mostly in the rainy season. Besides osmotic changes, these events caused the drainage of the water of the lagoon into the sea, loss of total organic nitrogen, and an increase of total phosphorus. The zooplankton community of Imboassica lagoon included freshwater and marine taxa, holoplanktonic, meroplanktonic and nectobenthonic forms. Polychaeta, Bivalvia and Gastropoda larvae, and the taxa of Rotifera Hexarthra spp., Lecane bulla, Synchaeta bicornis, nauplii of Cyclopoida and Calanoida copepods were considered constant taxa. Distinct zooplankton assemblages were found during zooplankton spatial surveys in oligohaline and mesohaline conditions. The successful zooplankton populations were either favored by the disturbance of the sand bar opening, such as the veligers of the gastropod Heleobia australis, or capable of fast recovery after the closing of the sand bar, during the succession from a marine into an oligohaline environment, such as Hexarthra spp.. Such populations seemed well adapted to the stress conditions usually found in the lagoon due to osmotic changes, column mixing, nutrient input, and high fish predation pressure. Rare species in the community, such as Moina minuta, presented population increases all over the lagoon under oligohaline conditions.  相似文献   

16.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

17.
Comprida lagoon is a shallow lagoon separated from the sea by a sand barrier. It has a brown-coloured freshwater with a high concentration of humic compounds. Its zooplankton community and limnological features were studied from March 1992 to December 1995. The lagoon was characterized by low transparency, acid water and relative constant physical–chemical features, except during sporadic marine entrances. The zooplankton, composed of holoplanktonic and meroplanktonic forms, consisted of 60 taxa. Eleven were permanent elements of the community: e.g. Bosminopsis deitersi, nauplii and copepodites of `Diaptomus' azureus. B. deitersi correlated positively with the lowest pH values and with the highest total dissolved nitrogen. Only four taxa correlated with chlorophyll-a concentration. Pigmentation in `D.' azureus is suggested to be as an energy reserve in a system where phytoplankton is probably light-limited.  相似文献   

18.
Macroinvertebrate communities have been widely used as a tool for assessing the environmental quality of freshwater ecosystems, whereas zooplankton communities have been to some extent neglected. However, the importance of using different indicators to achieve a more comprehensive framework of assessment regarding water quality has been recognized. This study compared estimates of species richness (number of species) and the Shannon–Wiener index for data on macroinvertebrate and zooplankton communities in tropical reservoirs and related them to their trophic state. The trop+hic classification was obtained by applying the Carlson index (1977) modified by Toledo et al. (1983), and the index of the Brazilian Society of the Environmental Technology Agency. The comparative response of the different indicators was analyzed using a series of bivariate correlations (Draftsman’s plot). The results illustrate that diversity measures, namely species richness, responded differently when related to the trophic classification of reservoirs, depending on the community considered. The species richness of zooplankton was positively related to hypereutrophic conditions, due to the higher number of rotifer species, including tolerant generalist species and at the same time, as a result of the exclusion of species from other groups, whereas for macroinvertebrates, species richness was negatively related to hypereutrophic conditions. Melanoides tuberculatus, which exhibits a high tolerance and competitive ability under such conditions, was the dominant species in macroinvertebrate communities, which excluded endemic species and reduced local richness and diversity. The same indicators applied to the zooplankton and macroinvertebrate communities might therefore provide contradictory responses regarding ecological quality assessment in tropical reservoirs, which suggest that zooplankton should be taken into account among the biological quality elements considered in the ecological quality assessment, management, and restoration of water bodies.  相似文献   

19.
The species composition and assemblage structure of the ichthyoplankton from the Mar Menor Lagoon in south‐east Spain are given. The fish larvae were sorted from zooplankton samples collected at 20 stations with a plankton net (50 cm mouth diameter and 500 μm mesh) during 36 surveys between February and December 1997. A total of 39 575 fish larvae representing 14 families, 22 genera and 36 species were identified. Gobiidae was the most dominant family (77·0%) followed by Blenniidae (19·4%) and Atherinidae (1·3%). The most abundant species were Gobius niger and Gobius paganellus , which accounted for 42·7 and 19·3% of the total respectively. These species were followed in order of relative abundance by Pomatoschistus marmoratus (13·9%), Parablennius pilicornis (9·4%), Lipophrys pavo (7·7%), Atherina boyeri (1·3%) and Parablennius tentacularis (1·3%). The high species diversity (2·0–2·8 bits individual−1 for the annual diversity spectra at each sampling station) reflected a diverse assemblage of species. The main commercial species in the lagoon (Sparidae and Mugilidae) were poorly represented among the ichthyoplankton and they probably enter the lagoon on the bottom as recruits. Chlorophyll a concentration in the water column was the main factor explaining the seasonal variation in larval abundance. Spatial distribution of larvae was related to hydrographical circulation patterns in the lagoon and the movement of marine‐spawned larvae through the channels connecting the lagoon with the Mediterranean Sea.  相似文献   

20.
Several investigations exist which use planktonic communities as indicators of water quality in Jamaican and Caribbean Bays, however, few are conducted before there are obvious effects of eutrophication. Therefore, most of our ‘baseline’ data are for bays already severely affected by pollution. This study was conducted to assess water quality in Discovery Bay, Jamaica, before there were severe signs of eutrophication. The bay was monitored over a 12-month period (October 1995–September 1996) using 10 stations. Physicochemical data indicated a well mixed upper 5 m of water column, below which discontinuities in temperature/salinity profiles indicated the influence of colder, more saline waters associated with deep offshore currents. Physicochemical variables were within the range for oligotrophic systems with a tendency towards mesotrophic in localized areas close to the shoreline. Signs of anthropogenic stress were associated with the eastern, southwestern and western sections of the bay. Of the over 120 species of phytoplankton found in the waters of Discovery Bay, most were neritic/oceanic and diatoms dominated while 11 were found to be potentially harmful species. While these harmful species occurred at all stations they occurred most frequently at stations on the eastern side of the bay. About 107 zooplankton species were identified, 52 of which were copepods. The species also represented a mix of neritic and oceanic taxa and mean abundances for the area ranged from 1077 m−3 at the mouth of the bay to 3794 m−3 close to the south shore (station 6). Generally stations closest to shore had greater zooplankton abundances than centrally located bay stations and stations close to oceanic influence. Acartia tonsa and Lucifer faxoni showed greatest densities at shoreline areas of the bay while Oithona plumifera, Undinula vulgaris and Temora stylifera were important at stations closest to oceanic influences. These species were thus considered as indicators of these different areas within the bay. From physicochemical data and the planktonic assemblage, Discovery Bay cannot be considered polluted, it is still more accurately classified as generally pristine with mesotrophic zones in the eastern and southeastern sections of the bay. These data therefore provide a real baseline of conditions for similar tropical coastal embayments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号