首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
 Immunohistochemical studies have been performed to investigate the occurrence and coexistence of two catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase, and several neuropeptides, including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P, in nerve fibres supplying porcine accessory genital glands, the seminal vesicles, prostate (body and the disseminated part) and bulbourethral glands. Three major populations of nerve fibres supplying non-vascular elements of the glands have been distinguished (from the largest to the smallest one): (1) noradrenergic fibres, the majority of which contain Leu5-enkephalin, neuropeptide Y or, to a lesser extent, somatostatin, (2) non-noradrenergic, putative cholinergic fibres containing vasoactive intestinal polypeptide, neuropeptide Y and/or somatostatin and, (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. Whilst the coexistence patterns within nerves supplying particular glands are similar, the density of innervation varies between the organs. The innervation of the seminal vesicles and prostatic body is more developed than that of the disseminated part of the prostate and bulbourethral glands. The majority of noradrenergic fibres related to blood vessels contain neuropeptide Y only, while the non-noradrenergic nerves contain mainly vasoactive intestinal polypeptide. The possible function and origin of particular nerve fibre populations are discussed. Accepted: 16 November 1998  相似文献   

2.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

3.
Summary Immunoreactivity of substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, and galanin is localized in nerve fibres distributed in the fungiform and filiform papillae of the tongue of the bullfrog,Rana catesbeiana. A combination of indirect double immunofluorescence labelling and a multiple dye filter system clearly demonstrated that all substance P fibres in the connective tissue core of the fungiform and filiform papillae, and within the rim of ciliated cells located on the top of the fungiform papillae showed coexistence with calcitonin gene-related peptide. A few fibres in the epithelial discs, which are located in the centre of the top of the fungiform papillae, showed the immunoreactivity of calcitonin gene-related peptide alone. There were no substance P fibres which showed coexistence with vasoactive intestinal polypeptide, galanin, and neuropeptide Y. In high magnification images, substance P and vasoactive intestinal polypeptide, and substance P and galanin fibres were recognized as two interwined fibres within the same thin nerve bundle. No immunoreactivity of leucine- and methionine-enkephalins can be detected. These findings suggest that the chemoreceptor function of the bullfrog gustatory organ may be under the control of complicated peptidergic innervation.  相似文献   

4.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

5.
The distribution and chemical coding of neurons in the porcine left and right inferior mesenteric ganglion projecting to the ascending colon and rectum have been investigated by using combined retrograde tracing and double-labelling immunohistochemistry. The ganglion contained many neurons supplying both gut regions. The colon-projecting neurons (CPN) occurred exclusively in the cranial part of the ganglia where they formed a large cluster distributed along the dorso-lateral ganglionic border and a smaller cluster located close to the caudal colonic nerve output. The rectum-projecting neurons (RPN) formed a long stripe along the entire length of the lateral ganglionic border and, within the right ganglion only, a small cluster located close to the caudal colonic nerve output. Immunohistochemistry revealed that the vast majority of the CPN and RPN were noradrenergic (tyrosine-hydroxylase-positive). Many noradrenergic neurons supplying the colon contained somatostatin or, less frequently, neuropeptide Y. In contrast, a significant subpopulation of the noradrenergic RPN expressed neuropeptide Y, whereas only a small proportion contained somatostatin. A small number of the non-adrenergic RPN were cholinergic (choline-acetyltransferase-positive) and a much larger subpopulation of the nerve cells supplying both the colon and rectum were non-adrenergic and non-cholinergic. Many cholinergic neurons contained neuropeptide Y. The non-adrenergic non-cholinergic neurons expressed mostly somatostatin or neuropeptide Y and some of those projecting to the rectum contained nitric oxide synthase, galanin or vasoactive intestinal polypeptide. Many of both the CPN and RPN were supplied with varicose nerve fibres exhibiting immunoreactivity against Leu5-enkephalin, somatostatin, choline-acetyltransferase, vasoactive intestinal polypeptide or nitric oxide synthase The somatotopic and neurochemical organization of this relatively large population of differently coded inferior mesenteric ganglion neurons projecting to the large bowel indicates that these cells are probably involved in intestino-intestinal reflexes controlling peristaltic and secretory activities.  相似文献   

6.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

7.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

8.
Combined retrograde tracing (using fluorescent tracer Fast Blue) and double-labelling immunofluorescence were used to study the distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric ganglion projecting to the vas deferens and seminal vesicle. The distribution and immunohistochemical properties of neurons projecting to both organs were similar. As revealed by retrograde tracing, Fast Blue-positive neurons were located within the left and right ganglia, with a distinct predominance in the ipsilateral one. In the ipsilateral ganglion, the majority of the neurons were located caudally, along the dorso-lateral ganglionic border, suggesting a somatotopic organization of the ganglion. Immunohistochemistry revealed four populations of retrogradely labelled neurons (from the largest to the smaller one): tyrosine hydroxylase-positive/neuropeptide Y-negative (TH+/NPY-), TH+/NPY+, TH-/NPY-, TH-/NPY+. With respect to their surrounding nerve fibres, two subpopulations of the dye-labelled neurons could be distinguished. The small one consisted of solitary neurons receiving a strong calcitonin gene-related peptide- and Leu5-enkephalin-, and a less intense vasoactive intestinal peptide-immunoreactive innervation. The remaining neurons were poorly supplied by singular nerve fibres containing some of the investigated peptides. We conclude that the caudal mesenteric ganglion should be considered as a prominent source of adrenergic and/or NPY-positive innervation for the porcine male reproductive tract.  相似文献   

9.
Morphologic and immunohistochemical studies were conducted to ascertain whether pumiliotoxin-B (PTX-B), an indolizine alkaloid from the skin of the Neotropical dendrobatid frog, Dendrobates pumilio, affects the anatomic and immunohistochemical features of the electrically stimulated mouse vas deferens preparations. PTX-B, at a concentration of 1 microM, consistently decreased the density pattern of neuropeptide Y (NPY)-immunoreactive nerve fibers contained within the circular muscular layer. The alkaloid also induced striking morphologic changes. It enlarged the lumen of the vasa and relaxed the muscular wall. Pretreatment with prazosin or haloperidol affected neither the release of NPY nor the morphologic changes; pretreatment with tetrodotoxin and guanethidine abolished NPY release and prevented the PTX-B-induced morphologic changes. PTX-B had no appreciable effect on the density and distribution pattern of nerve fibers immunostained for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, enkephalin, pancreatic polypeptide, 5-hydroxy-tryptamine and tyrosine hydroxylase.  相似文献   

10.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

11.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

12.
Nitric oxide and various neuropeptides in the myenteric plexus regulate esophageal motility. We sought colocalization of nitric oxide synthase and neuropeptides in frozen sections of mid-portion of smoothmuscled opossum esophagus using NADPH-diaphorase activity to mark the synthase and immunoreactivity to detect peptides. The peptides, all with demonstrated physiological activity in this organ, were calcitonin generelated peptide, galanin, neuropeptide Y, substance P, and vasoactive intestinal polypeptide. The ExtrAvidin Peroxidase immunostain for each peptide was carried up to the final peroxidase reaction with 3-amino-9-ethylcarbazole. The NADPH-diaphorase reaction was applied with short incubation to provide light staining just before the peroxidase reaction was performed. We examined sections for the proportions of singly and dually labeled nerve cells in the myenteric plexus. NADPH-diaphorase activity was highly colocalized with calcitonin gene-related peptide (59%), galanin (54%), and vasoactive intestinal polypeptide (53%). It showed little colocalization with neuropeptide Y (10%) and substance P (8%). The proportions of all nerve cells containing each of the substances were: NADPH-diaphorase-33%, calcitonin gene-related peptide-30%, galanin-55%, neuropeptide Y-16%, substance P-35%, and vasoactive intestinal polypeptide-58%. We conclude that the nerves responsible for peristalsis in the esophagus may act by releasing nitric oxide along with other inhibitory substances, calcitonin gene-related peptide, galanin, and vasoactive intestinal polypeptide, but not excitatory substances, neuropeptide Y and substance P.  相似文献   

13.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

14.
The localization and distribution of neuropeptides including neuropeptide Y (NPY), [Met5]enkephalin-Arg6-Gly7-Leu8 (MEAGL), vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), substance P and somatostatin (SOM) were analyzed in the stellate ganglion of the pig by use of the indirect immunofluorescence technique. NPY, MEAGL, SOM, VIP and CGRP immunoreactivities were found to exist in subpopulations of neuronal cell bodies of the stellate ganglion. A population of the small intensely fluorescent (SIF) cells showed MEAGL immunoreactivity. In addition, the presence of NPY-, MEAGL-, CGRP-, SP-, SOM- and VIP-immunoreactive nerve fibers and axonal varicosities were observed in the stellate ganglion. The localization and pattern of distribution of these peptides in the porcine stellate ganglion were compared with studies carried out on stellate ganglia of other mammalian species.  相似文献   

15.
The distribution of peptidergic nerves in canine mammary tissues was studied by immunohistochemical techniques. In addition, the general and the noradrenergic innervations were demonstrated using protein gene product 9.5 and tyrosine hydroxylase immunoreactivities as markers, respectively. Tissue specimens from the caudal mammary glands were obtained from adult, non-lactating, female dogs. The overall innervation of the mammary gland tissue was sparse and primarily associated with the arterial vasculature. Nerve fibres positive for protein gene product 9.5 were rarely found in the secretory parenchyma. The nipple was not richly innervated, although it displayed a greater amount of nerve fibres than the mammary parenchyma. Nerve fibres supplying nonvascular structures of the nipple expressed immunoreactivity for the sensory neuropeptides calcitonin gene-related peptide, substance P and neuropeptide K, but not for vasoactive intestinal peptide, peptide histidine isoleucine and C-flanking peptide of neuropeptide Y. Somatostatin immunoreactivity was not detected in mammary gland tissue. Our results indicate that the innervation of the canine mammary gland is mainly affiliated with the vasculature and comprises peptidergic nerves which may be involved in the regulation of local blood flow. The presence of sensory neuropeptides in nerves supplying the mammary nipple suggest that these peptides may play a role in the afferent pathway of the milk ejection reflex.  相似文献   

16.
A simple method combining indirect immunofluorescence and histochemical techniques was developed in order to demonstrate the presence of both neuropeptide immunoreactivity and acetylcholinesterase activity in the same whole-mount preparation. It was found that the two methods can be combined without interfering with one another and may be viewed and photographed simultaneously. The guinea pig basilar artery was chosen as a model tissue. While vasoactive intestinal polypeptide immunoreactivity and acetylcholinesterase activity were found to occur in the same perivascular nerve fibres, tyrosine hydroxylase, neuropeptide tyrosine and calcitonin gene-related peptide immunoreactivity were present in distinct nerve subpopulations. It is possible using this double staining procedure, to analyse the interrelationship of putative cholinergic nerves with other components of the autonomic and sensory nervous system.  相似文献   

17.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

18.
Peptidergic nerves in human dental pulp. An immunocytochemical study   总被引:1,自引:0,他引:1  
The peptidergic innervation of human dental pulp was studied with indirect immunofluorescence and immunoperoxidase techniques. Pulpal nerve fibres displaying immunoreactivity for cholecystokinin, calcitonin gene-related peptide, C-terminal flanking peptide of neuropeptide tyrosine, leucine-enkephalin, methionine-enkephalin, neuropeptide K, neuropeptide tyrosine, peptide with N-terminal histidine and C-terminal isoleucine, somatostatin-28, substance P and vasoactive intestinal polypeptide were observed. Immunoreactive axon varicosities were detectable within radicular and coronal nerve trunks and within the nerve plexus of Raschkow in the para-odontoblastic region. Many peptidergic nerve fibres were observed in association with blood vessels of various sizes. Substance P- and calcitonin-gene-related peptide-immunoreactive axons were visible in the odontoblastic layer. The occurrence of VIP- and PHI-immunoreactive fibres lends support to the hypothesis that human tooth may be supplied by parasympathetic nerves. The immunocytochemical results here shown provide a morphological basis to previous experimental studies concerning the possible roles of neuropeptides in nociception mechanisms, control of the blood flow and modulation of the inflammatory response in dental tissues.  相似文献   

19.
Summary The ferret is widely used in functional and neuromorphological studies on the respiratory tract. We have examined the occurrence and distribution of peptide-containing and adrenergic nerve fibers (using dopamine--hydroxylase as a marker). Adrenergic nerve fibers and fibers storing vasoactive intestinal peptide have a widespread distribution along the entire respiratory tract. Adrenergic nerve fibers were found in the lamina propria, as well as around blood vessels and glands and in smooth muscle. Nerve fibers storing vasoactive intestinal peptide occurred in the epithelium, the lamina propria, around blood vessels and glands, and among muscle bundles. Substance P-, neurokinin A- and calcitonin gene-related peptide-containing nerve fibers predominated beneath and within the epithelium along the entire respiratory tract. Neuropeptide Y-containing nerve fibers were prominent among smooth muscle bundles and around glands. The blood vessels in the wall of the airways were richly supplied with peptidecontaining nerve fibers and adrenergic fibers. Ganglia located over the outer or dorsal surface of the tracheal wall harbored vasoactive intestinal peptide-containing nerve cell bodies. Substance P and neurokinin A invariably coexisted in the same nerve fibers. Further, coexistence of substance P/neurokinin A and calcitonin gene-related peptide was observed in the nerve fibers associated with the epithelium. Vasoactive intestinal peptide, neuropeptide Y and occasionally also substance P coexisted in the population of nerve fibers associated with blood vessels and smooth muscle. Many adrenergic nerve fibers contained neuropeptide Y.  相似文献   

20.
Autonomic nerves supplying mammalian male internal genital organs have an important role in the regulation of reproductive function. To find out the relationships between the neurochemical content of these nerves and the reproductive activity, we performed a histochemical and immunohistochemical study in a species, the water buffalo, exhibiting a seasonal sexual behaviour. The distribution of noradrenergic and nitric oxide synthase (NOS)- and peptide-containing nerves was evaluated during the mating and non-mating periods. Fresh segments of vas deferens and accessory genital glands were collected immediately after slaughter and immersed in 4% paraformaldehyde. Frozen sections were obtained and processed according to single and double labelling immunofluorescent procedures or NADPH-diaphorase histochemistry. During the mating period, a dense noradrenergic innervation was observed to supply the vas deferens as well as the accessory genital glands. NOS- and peptide-containing nerves were also observed but with a lower density. During the non-mating period noradrenergic nerves dramatically reduced. In addition, neuropeptide Y (NPY)- and vasoactive intestinal peptide (VIP)-containing nerves were also reduced. These findings suggest the presence of complex interactions between androgen hormones and the autonomic nerve supply in the regulation of male water buffalo reproductive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号