首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
植物功能性状、功能多样性与生态系统功能: 进展与展望   总被引:1,自引:0,他引:1  
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。  相似文献   

2.
Patterns of plant trait variation across spatial scales are important for understanding ecosystem functioning and services.However, habitat-related drivers of these patterns are poorly understood. In a conceptual model, we ask whether and how the patterns of within-and among-site plant trait variation are driven by habitat type(terrestrial vs. wetland) across large climatic gradients. We tested these through spatial-hierarchical-sampling of leaves in herbaceous-dominated terrestrial and wetland communities within each of 26 sites across China. For all 13 plant traits, within-site variation was larger than among-site variation in both terrestrial and wetland habitats. Within-site variation was similar in most leaf traits related to carbon and nutrient economics but larger in specific leaf area and size-related traits(plant height, leaf area and thickness) in wetland compared to terrestrial habitats. Among-site variation was larger in terrestrial than wetland habitats for 10 leaf traits but smaller for plant height, leaf area and leaf nitrogen. Our results indicate the important role of local ecological processes in driving plant trait variation among coexisting species and the dependence of functional variation across habitats on traits considered. These findings will help to understand and predict the effects of climatic or land-use changes on ecosystem functioning and services.  相似文献   

3.
Abstract. Plant functional types (PFTs) bridge the gap between plant physiology and community and ecosystem processes, thus providing a powerful tool in climate change research. We aimed at identifying PFTs within the flora of central-western Argentina, and to explore their possible consequences for ecosystem function. We analyzed 24 vegetative and regenerative traits of the 100 most abundant species along a steep climatic gradient. Based on plant traits and standard multivariate techniques, we identified eight PFTs. Our results confirmed, over a wide range of climatic conditions, the occurrence of broad recurrent patterns of association among plant traits reported for other floras; namely trade-offs between high investment in photosynthesis and growth on the one hand, and preferential allocation to storage and defence on the other. Regenerative traits were only partially coupled with vegetative traits. Using easily-measured plant traits and individual species cover in 63 sites, we predicted main community-ecosystem processes along the regional gradient. We hypothesized likely impacts of global climatic change on PFTs and ecosystems in situ, and analysed their probabilities of migrating in response to changing climatic conditions. Finally, we discuss the advantages and limitations of this kind of approach in predicting changes in plant distribution and in ecosystem processes over the next century.  相似文献   

4.
Abstract. Throughout the Mediterranean region, vegetation dynamics are affected by human activities which are either ‘stresses’ or ‘disturbances’, depending on their frequency, intensity and spatial distribution. To minimize or reduce anthropogenic degradation caused by land use and other disturbances, it is necessary to understand and predict the various responses of plant communities to disturbances. In particular, detailed but integrative approaches are required to assimilate large databases on vegetation and to make them directly useful for managers and restorers. We describe two case studies undertaken to evaluate the effects of logging or overgrazing on plant species diversity in pine forests of southern France and steppe ecosystems of southern Tunisia. Both studies employed the same methodology to identify plant functional traits (morphological, life history and regeneration traits) associated with community response to disturbance. The results of these analyses allowed us to develop state and transition models that could be used to plan and predict ecosystem trajectories, assess ongoing degradation processes and monitor community and ecosystem responses to management and restoration practices. We discuss the relevance and the use of plant functional types (PFTs) as tools for ecosystem management and planning and for monitoring restoration in southern Europe, northern Africa and elsewhere. Using this approach it is possible to improve management strategies for the conservation, restoration and sustainable exploitation of biodiversity and of ecosystems.  相似文献   

5.
Elevational gradients are increasingly recognized as a valuable tool for understanding how community and ecosystem properties respond to climatic factors, but little is known about how plant traits and their effects on ecosystem processes respond to elevation. We studied the response of plant leaf and litter traits, and litter decomposability across a gradient of elevation, and thus temperature, in subarctic tundra in northern Sweden for each of two contrasting vegetation types, heath and meadow, dominated by dwarf shrubs and herbaceous plants respectively. This was done at each of three levels; across species, within individual species, and the plant community using a community weighted average approach. Several leaf and litter traits shifted with increasing elevation in a manner consistent with greater conservation of nutrients at all three levels, and the most consistent response was an increase in tissue N to P ratio. However, litter decomposition was less directly responsive to elevation because the leaf and litter traits which were most responsive to elevation were not necessarily those responsible for driving decomposition. At the community level, the response to elevation of foliar and litter traits, and decomposability, varied greatly among the two vegetation types, highlighting the importance of vegetation type in determining ecological responses to climatic factors such as temperature. Finally our results highlight how understanding the responses of leaf and litter characteristics of functionally distinct vegetation types, and the processes that they drive, to temperature helps provide insights about how future climate change could affect tundra ecosystems.  相似文献   

6.
It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation–soil feedbacks. One fruitful avenue for studying such changing feedbacks is through plant functional traits, as an understanding of these traits may help us to understand and synthesise (1) responses of vegetation (through ‘response traits’ and ‘specific response functions’ of each species) to winter climate and (2) the effects of changing vegetation composition (through ‘effect traits’ and ‘specific effect functions’ of each species) on soil functions. It is the relative correspondence of variation in response and effect traits that will provide useful data on the impacts of winter climate change on carbon and nutrient cycling processes. Here we discuss several examples of how the trait-based, response–effect framework can help scientists to better understand the effects of winter warming on key ecosystem functions in cold biomes. These examples support the view that measuring species for their response and effect traits, and how these traits are linked across species through correspondence of variation in specific response and effects functions, may be a useful approach for teasing out the contribution of changing vegetation composition to winter warming effects on ecosystem functions. This approach will be particularly useful when linked with ecosystem-level measurements of vegetation and process responses to winter warming along natural gradients, over medium time scales in given sites or in response to experimental climate manipulations.  相似文献   

7.

Background and scope

Plant communities and underlying soils undergo substantial, coordinated shifts throughout ecosystem development. However, shifts in the composition and function of mycorrhizal fungi remain poorly understood, despite their role as a major interface between plants and soil. We synthesise evidence for shifts among mycorrhizal types (i.e., ectomycorrhizas, arbuscular and ericoid mycorrhizas) and in fungal communities within mycorrhizal types along long-term chronosequences that include retrogressive stages. These systems represent strong, predictable patterns of increasing, then declining soil fertility during ecosystem development, and are associated with coordinated changes in plant and fungal functional traits and ecological processes.

Conclusions

Mycorrhizal types do not demonstrate consistent shifts through ecosystem development. Rather, most mycorrhizal types can dominate at any stage of ecosystem development, driven by biogeography (i.e., availability of mycorrhizal host species), plant community assembly, climate and other factors. In contrast to coordinated shifts in soil fertility, plant traits and ecological processes throughout ecosystem development, shifts in fungal communities within and among mycorrhizal types are weak or idiosyncratic. The consequences of these changes in mycorrhizal communities and their function for plant–soil feedbacks or control over long-term nutrient depletion remain poorly understood, but could be resolved through empirical analyses of long-term soil chronosequences.  相似文献   

8.
A principal challenge in ecology is to integrate physiological function (e.g. photosynthesis) across a collection of individuals (e.g. plants of different species) to understand the functioning of the entire ensemble (e.g. primary productivity). The control that organism size exerts over physiological and ecological function suggests that allometry could be a powerful tool for scaling ecological processes across levels of organization. Here we use individual plant allometries to predict how nutrient content and productivity scale with total plant biomass (phytomass) in whole plant communities. As predicted by our model, net primary productivity as well as whole community nitrogen and phosphorus content all scale allometrically with phytomass across diverse plant communities, from tropical forest to arctic tundra. Importantly, productivity data deviate quantitatively from the theoretically derived prediction, and nutrient productivity (production per unit nutrient) of terrestrial plant communities decreases systematically with increasing total phytomass. These results are consistent with the existence of pronounced competitive size hierarchies. The previously undocumented generality of these 'ecosystem allometries' and their basis in the structure and function of individual plants will likely provide a useful quantitative framework for research linking plant traits to ecosystem processes.  相似文献   

9.
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a ‘Holy Grail’ in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community‐ and ecosystem‐level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait‐based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta‐analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized.  相似文献   

10.
王娟  张登山  肖元明  王博  周国英 《生态学报》2023,43(6):2465-2475
围封对草地生物多样性和初级生产力的影响是草地生态学研究的热点问题之一。基于2013—2021年在青藏高原东北部紫花针茅(Stipa purpurea)高寒草原围栏内外植物群落长期调查数据,从物种多样性、功能性状的角度解析了高寒草原地上生物量对长期围封的生态响应过程。结果表明:(1)围封处理对高寒草原物种多样性的负效应具有强烈的时间依赖性。围封处理显著提高地上生物量,但也显著降低了生物量稳定性和异步性,意味着高寒草原稳定的、可持续的生态系统服务功能被长期围封处理削弱。(2)植物功能性状对长期围封处理表现出差异性响应模式;与叶绿素性状相比,叶形态性状对长期围封处理表现出更强的敏感性。(3)物种多样性和功能性状与地上生物量之间均存在显著相关关系,并且物种多样性的影响被功能性状调控进而对地上生物量发挥间接效应,群落加权性状和功能分异度共同对草地生物量发挥直接的主导效应。研究结果证明了植物功能性状通过介导物种多样性与其共同驱动高寒草原地上生物量对长期围封的响应。因此,在未来草地管理过程中,同步研究植物物种和功能属性对于全面揭示生态系统的响应机制至关重要。  相似文献   

11.
Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition.  相似文献   

12.
Chapin FS 《Annals of botany》2003,91(4):455-463
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime.  相似文献   

13.
Abstract. The use of plant functional types (PFTs) to describe patterns and processes in plant communities has become essential to study and predict consequences of global change on vegetation and ecosystem processes. A PFT is a group of plants that, irrespective of phylogeny, are similar in a given set of traits and similar in their association to certain variables, which may be factors to which the plants are responding or effects of the plants in the ecosystem. To define PFTs relevant traits must be selected and an appropriate method must be used to classify plants into types. We critically review methods used for the analysis of PFT‐based data and describe a new recursive algorithm to numerically search for traits and find optimal PFTs. The algorithm uses three data matrices: describing populations by traits, communities by these populations and community sites by environmental factors or effects. It defines PFTs polythetically by cluster analysis, revealing plant types whose performance in communities is maximally associated to the specified environmental variables. We test the method with data from natural grassland communities of southern Brazil, which were experimentally subjected to combinations of grazing levels and N‐fertilizer. The new method is found to be better than similar analytical procedures previously described. Redundancy among traits is discussed and a procedure for comparing alternative solutions is presented based on the similarity in terms of PFT responses between different trait subsets. The concept of PFT response group is illustrated by example.  相似文献   

14.
A fundamental yet elusive goal of ecology is to predict the structure of communities from the environmental conditions they experience. Trait‐based approaches to terrestrial plant communities have shown that functional traits can help reveal the mechanisms underlying community assembly, but such approaches have not been tested on the microbes that dominate ecosystem processes in the ocean. Here, we test whether functional traits can explain community responses to seasonal environmental fluctuation, using a time series of the phytoplankton of the English Channel. We show that interspecific variation in response to major limiting resources, light and nitrate, can be well‐predicted by lab‐measured traits characterising light utilisation, nitrate utilisation and maximum growth rate. As these relationships were predicted a priori, using independently measured traits, our results show that functional traits provide a strong mechanistic foundation for understanding the structure and dynamics of ecological communities.  相似文献   

15.
Current climatic models predict increasing frequency and magnitude of extreme climatic events (ECEs). Ecological studies recognize the importance of these extremes as drivers of plant growth and mortality, as well as drivers of ecological and evolutionary processes. Here we review observational and experimental studies on ECEs on herbaceous plants and shrubs. Extreme events considered were heat waves, drought, advanced or delayed snowmelt, heavy rainfalls, frosts, pulsed watering and flooding. We analysed 39 studies dealing with direct response of plant to ECEs in different ecosystems, with a particular focus on cold ecosystems (alpine and arctic). Although the number of studies increases every year, the understanding of ecological consequences of ECEs is fragmentary. In general, ECEs affected negatively on physiological processes (efficiency of photosystem II, stomatal conductance and leaf water potential), productivity and reproduction, and had consequences on population demography and recruitment several years after ECE. Indeed, the plant responses to ECEs were species specific and depended on the plant life stage and the timing of ECE. In fact, the magnitude of the effect of ECEs decreased over the growing season. Drought had the most severe effect on plants, while heat waves had minor effect if water was available. The overlap of different ECEs had an additive effect (e.g. drought associated to heat-waves). In general, both neutral or positive plant responses were found and acclimation is possible. In some cases, ECEs exert a strong selective pressure on plant species.  相似文献   

16.
Abstract. Grasslands encompass a broad array of vegetation and climatic zones. We describe the first developments towards a rule-based functional model for predicting vegetation structure in Australian and New Zealand pastures and rangelands. The approach aims to predict the combined effects of climate and disturbance by humans and grazing livestock, and to provide a level of resolution needed for predicting changes in pastures and rangelands. We enlisted expert knowledge to develop: (1) a minimum set of critical traits; (2) rules relating site variables to favoured plant attributes; (3) rules relating attributes to plant functional traits, and (4) rules relating plant functional types to likely plant communities. We tested the resulting model by deriving some simple predictions of plant communities of some existing pasture and rangeland sites in Australia and New Zealand, with differing climatic and human disturbance inputs. The results indicate that this first model is able to predict plant communities with varying success rates, and with the best results in cases where there are extreme climates or high management inputs. Key sensitivities in the model where further research is required include: (1) the urgent need for more explicit understanding of the key plant functional attributes favoured by differing climates and disturbance regimes, (2) the functional relationships between these plant functional attributes and recognisable plant functional types in vegetation, and (3) the assembly rules for the coexistence of these different plant functional types in major plant communities. The same understanding is required for subsequent process-based modelling development.  相似文献   

17.
Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day-to-day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non-linearly to environmental drivers. We assessed how these individual-process responses to changes in day-to-day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.  相似文献   

18.
Understanding the responses of biodiversity to drivers of change and the effects of biodiversity on ecosystem properties and ecosystem services is a key challenge in the context of global environmental change. We performed a systematic review and meta‐analysis of the scientific literature linking direct drivers of change and ecosystem services via functional traits of three taxonomic groups (vegetation, invertebrates, and vertebrates) to: (1) uncover trends and research biases in this field; and (2) synthesize existing empirical evidence. Our results show the existence of important biases in published studies related to ecosystem types, taxonomic groups, direct drivers of change, ecosystem services, geographical range, and the spatial scale of analysis. We found multiple evidence of links between drivers and services mediated by functional traits, particularly between land‐use changes and regulating services in vegetation and invertebrates. Seventy‐five functional traits were recorded in our sample. However, few of these functional traits were repeatedly found to be associated with both the species responses to direct drivers of change (response traits) and the species effects on the provision of ecosystem services (effect traits). Our results highlight the existence of potential “key functional traits,” understood as those that have the capacity to influence the provision of multiple ecosystem services, while responding to specific drivers of change, across a variety of systems and organisms. Identifying “key functional traits” would help to develop robust indicator systems to monitor changes in biodiversity and their effects on ecosystem functioning and ecosystem services supply.  相似文献   

19.
While soil ecosystems undergo important modifications due to global change, the effect of soil properties on plant distributions is still poorly understood. Plant growth is not only controlled by soil physico-chemistry but also by microbial activities through the decomposition of organic matter and the recycling of nutrients essential for plants. A growing body of evidence also suggests that plant functional traits modulate species’ response to environmental gradients. However, no study has yet contrasted the importance of soil physico-chemistry, microbial activities and climate on plant species distributions, while accounting for how plant functional traits can influence species-specific responses. Using hierarchical effects in a multi-species distribution model, we investigate how four functional traits related to resource acquisition (plant height, leaf carbon to nitrogen ratio, leaf dry matter content and specific leaf area) modulate the response of 44 plant species to climatic variables, soil physico-chemical properties and microbial decomposition activity (i.e. exoenzymatic activities) in the French Alps. Our hierarchical trait-based model allowed to predict well 41 species according to the TSS statistic. In addition to climate, the combination of soil C/N, as a measure of organic matter quality, and exoenzymatic activity, as a measure of microbial decomposition activity, strongly improved predictions of plant distributions. Plant traits played an important role. In particular, species with conservative traits performed better under limiting nutrient conditions but were outcompeted by exploitative plants in more favorable environments. We demonstrate tight associations between microbial decomposition activity, plant functional traits associated to different resource acquisition strategies and plant distributions. This highlights the importance of plant–soil linkages for mountain plant distributions. These results are crucial for biodiversity modelling in a world where both climatic and soil systems are undergoing profound and rapid transformations.  相似文献   

20.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号