首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Plant facilitation (positive plant–plant interactions) strongly influences biodiversity, structure, and dynamics in plant communities, and the topic has received considerable attention among ecologists. Most studies of facilitation processes by shrubs have been conducted at small spatial scales between shrubs and their neighboring species. Yet, we know little about whether facilitation processes by shrubs at a small scale (i.e., a patch scale) also work at a larger scale (i.e., a site scale) in terms of the maintenance of biodiversity. Here, we report that the facilitative effects of shrubs on plant diversity at a larger scale can be explained by changing ecological stoichiometry. The soil fertility showed unimodal shape along shrub cover gradient, suggesting that the facilitative effects of a shrub do not necessarily increase as the shrub develops. The unimodal shape of dependence of plant species richness on shrub cover probably was generated by the unimodal dependence of soil fertility on shrub cover. Soil nutrient enrichment by shrubs shifted low N:P ratios of plant communities with low levels of shrub cover to more balanced N:P ratios at intermediate levels of shrub cover. At the peak N:P ratio along the gradient in shrub cover, the maximum species richness and functional richness were observed, which was consistent with the unimodal relationship predicted by the resource balance hypothesis. Thus, our findings showed that facilitation processes by shrubs at a patch scale also work at a larger scale in terms of the maintenance of biodiversity. Because observed larger-scale facilitation processes are enhanced at some intermediate levels of shrub cover, this study offers practical insight into the need for management practices that allow some intermediate levels of grazing by livestock for optimizing the role of larger-scale facilitation processes in the maintenance of biodiversity and ecosystem functioning in arid and semi-arid rangelands.  相似文献   

2.
Facilitative or positive interactions among species are driven mainly by the environmental amelioration or protection from grazing provided by nurse plants. Some studies have suggested that protection from grazing is inconsequential in water-limited environments because of low herbivore densities and their grazing effects. Others, however, argue that herbivores have a major effect on semi-arid plant communities, and that protection from grazing is a significant factor driving positive plant–plant interactions in such environments. We identified a gradient in grazing pressure in a semi-arid shrubland in south-eastern Australia along which we compared soil condition, incident radiation and plant composition beneath two nurse shrub species with open (shrub-free) interspaces. Our aim was to assess the degree of microclimatic amelioration provided by both shrubs, and changes in the interactions (intensity, importance and frequency) between both nurse shrubs and their understorey species, and their effects on species richness at the community level. Both the relative interaction intensity (RII) and interaction importance (Iimp) indices of plant–plant interactions were generally positive and independent of grazing pressure. Soil beneath both nurse plants had significantly greater indices of nutrient cycling and infiltration, and contained more C and N than soil in the open. Almost twice as many species occurred under the canopies of both shrubs (44 species) than in the open (23 species), and the composition of species differed significantly among microsites. Fifty-four percent of all perennial plant species occurred exclusively under shrubs. Our results suggest that environmental amelioration is a stronger driver of the facilitatory effect of shrubs on their understorey species than protection from grazing. Our conclusions are based on the fact that the substantial effect of plant–plant interactions on plant species richness was largely independent of grazing pressure. Irrespective of the underlying mechanism for this effect, our study illustrates the ecological role of shrubs as refugia for understorey plants in semi-arid environments and cautions against management practices aimed at reducing shrub populations.  相似文献   

3.
草食动物采食对草地植物多样性和生态系统功能的影响机制是放牧生态学研究的核心问题。该研究以内蒙古锡林郭勒盟苏尼特右旗荒漠草原的长期放牧控制实验为平台, 从既有草地植物多样性和动物偏食性两个层面系统地研究了荒漠草地植物多样性对草食动物采食的响应机制。结果显示: 1)荒漠草地植物对草食动物采食呈现4种响应模式: 放牧“隐没种”、放牧“敏感种”、放牧“无感种”、“绝对优势种”; 2)在群落尺度上, 物种多样性指数随放牧强度增加而减少, 与不放牧小区相比, 重度放牧(HG)与适度放牧(MG)小区植物多样性均下降, 且这一规律同样适用于功能群多样性, 灌木半灌木这一功能群内物种多样性对放牧干扰较敏感; 3)在草地既有植物的基础上, 以不放牧小区为参考系, 草食动物对植物功能群偏食性的排序为: 一二年生草本(AB) >多年生杂类草(PF) >灌木半灌木(SS) >多年生禾草(PG), 且偏食性物种主要分布于AB和PF中; 4)植物多样性与动物偏食性基本呈显著负相关关系(p < 0.05)。  相似文献   

4.
G. Zhou  Y. Wang  S. Wang 《植被学杂志》2002,13(3):361-368
Abstracts. The Northeast China Transect (NECT) has been used to study how water availability influences the composition of plant functional types, soil organic matter, net primary production, trace gas flux, and land‐use patterns. We discuss relations of plant species number, soil C and N and above‐ground biomass with a precipitation gradient and interactions with land‐use practices (grassland fencing, mowing and grazing), on the basis of data from the west part of NECT. The results indicate: 1. The above‐ground biomass of grassland communities has a linear relationship with precipitation under three land‐use practices, while plant species number, soil C, and total soil N have linear relationships with precipitation under fencing and mowing; under grazing the relationships are non‐linear. 2. Plant species number, soil C and total soil N have strong linear relationships with above‐ground biomass under both fencing and mowing, while they seem to have nonlinear relationships under grazing. 3. Land‐use practices along the precipitation gradient result not only in changes in grassland communities but also in qualitative changes of their structure and function. 4. Grasslands are more vulnerable to changes in climate under mowing than under fencing, and are more capable to store C in soil and plants. 5. At a given precipitation level, number of plant species, above‐ground biomass, and soil C are higher under low to medium intensity of human activities (mowing and grazing). A better understanding of how different intensities of human activities will affect the structure and function of grassland will require further research.  相似文献   

5.
Salt marshes of Samborombón Bay (Argentina) have been grazed sporadically at very low stocking rates, but in the last decade, grazing intensity increased due to agriculture expansion. We investigated the effect of cattle grazing on vegetation and soil salinity on the most extended Spartina densiflora community. This community develops along an elevation gradient where the frequency and duration of tidal flooding and soil salinity increased as elevation decreased. Vegetation and soil data were collected from a national park excluded to cattle grazing for 30 years and from an adjacent commercial livestock farm continuously grazed by cattle. As elevation level decreased, plant cover, richness and diversity of functional groups and species decreased. As we expected, grazing altered soil salinity and vegetation composition in different extent along the elevation gradient. Grazing changed vegetation structure more intensively in the high elevation level because it reduced the competitive exclusion exerted by S. densiflora, allowing the increase in floristic richness. Grazing increased soil salinity and the contribution of salt-tolerant species only in the medium but not in the low elevation level probably because the higher frequency and duration of tidal flooding counterbalanced the increase in evaporation promoted by biomass removal in the low respect to the medium elevation level. While grazing may cause positive impacts for plant conservation in the high elevation level, it may cause negative consequence for livestock production because of the reduction in forage quality along the entire elevation gradient.  相似文献   

6.
In this study, we investigate changes in ecosystem structure that occur over a gradient of land-degradation in the southwestern USA, where shrubs are encroaching into native grassland. We evaluate a conceptual model which posits that the development of biotic and abiotic structural connectivity is due to ecogeomorphic feedbacks. Three hypotheses are evaluated: 1. Over the shrub-encroachment gradient, the difference in soil properties under each surface-cover type will change non-linearly, becoming increasingly different; 2. There will be a reduction in vegetation cover and an increase in vegetation-patch size that is concurrent with an increase in the spatial heterogeneity of soil properties over the shrub-encroachment gradient; and 3. Over the shrub-encroachment gradient, the range at which soil properties are autocorrelated will progressively exceed the range at which vegetation is autocorrelated. Field-based monitoring of vegetation and soil properties was carried out over a shrub-encroachment gradient at the Sevilleta National Wildlife Refuge in New Mexico, USA. Results of this study show that vegetation cover decreases over the shrub-encroachment gradient, but vegetation-patch size increases, with a concurrent increase in the spatial heterogeneity of soil properties. Typically, there are significant differences in soil properties between non-vegetated and vegetated surfaces, but for grass and shrub patches, there are only significant differences for the biotic soil properties. Results suggest that it is the development of larger, well-connected, non-vegetated patches that is most important in driving the overall behavior of shrub-dominated sites. Results of this study support the hypothesis that feedbacks of functional connectivity reinforce the development of structural connectivity, which increases the resilience of the shrub-dominated state, and thus makes it harder for grasses to re-establish and reverse the vegetation change.  相似文献   

7.
Summary The ELM ecosystem-level grassland model simulates the flow of water, heat, nitrogen, and phosphorus through the ecosystem and the biomass dynamics of plants, consumers, and the decomposers. This model was adapted to a tallgrass prairie site in northeastern Oklahoma, USA, the Osage Site of the U.S. International Biological Program Grassland Biome. Several range management manipulations were simulated by the model and the results compared to field data and literature information: (1) altering the grazing intensity, grazing system, and grazing time period; (2) adding nitrogen and phosphorus to the grassland; (3) adding water during the growing season; and (4) spring burning of the prairie.The model showed that cattle weight gain per head, above-ground and belowground plant production, transpiration water loss, standing dead biomass, and the net nitrogen balance decrease with increasing grazing intensity, while soil water content and bare soil water loss increase. A moderately stocked year-round cow-calf grazing system is more beneficial to the grassland than a more highly stocked seasonal steer grazing system because the former increases the aboveground and belowground primary production and the plant nutrient uptake rates. Range manipulations, such as fire, which stimulate uniform grazing of a pasture, increase primary production, cattle weight gains, and nutrient uptake of plants and animals. Model results indicated that adding fertilizer was the best strategy for increasing cattle weight gains per head, while adding water would produce the greatest increase in primary production. Simulation of yearly and triennial spring burns suggests that these treatments increase primary production, plant nutrient uptake, and cattle weight gain per head. Burning increases the nitrogen losses from the systems; however, these losses are greater with annual burns. The model results also suggest the spatial grazing pattern of cattle must be considered to correctly represent the impact of grazing on the prairie.The model is used to describe the behavior of the tallgrass prairie ecosystem, evaluate alternative management strategies, and identify future scientific research and management studies.  相似文献   

8.
With grasslands and savannas covering 20% of the world’s land surface, accounting for 30–35% of worldwide Net Primary Productivity and supporting hundreds of millions of people, predicting changes in tree/grass systems is priority. Inappropriate land management and rising atmospheric CO2 levels result in increased woody cover in savannas. Although woody encroachment occurs world-wide, Africa’s tourism and livestock grazing industries may be particularly vulnerable. Forecasts of responses of African wildlife and available grazing biomass to increases in woody cover are thus urgently needed. These predictions are hard to make due to non-linear responses and poorly understood feedback mechanisms between woody cover and other ecological responders, problems further amplified by the lack of long-term and large-scale datasets. We propose that a space-for-time analysis along an existing woody cover gradient overcomes some of these forecasting problems. Here we show, using an existing woody cover gradient (0–65%) across the Kruger National Park, South Africa, that increased woody cover is associated with (i) changed herbivore assemblage composition, (ii) reduced grass biomass, and (iii) reduced fire frequency. Furthermore, although increased woody cover is associated with reduced livestock production, we found indigenous herbivore biomass (excluding elephants) remains unchanged between 20–65% woody cover. This is due to a significant reorganization in the herbivore assemblage composition, mostly as a result of meso-grazers being substituted by browsers at increasing woody cover. Our results suggest that woody encroachment will have cascading consequences for Africa’s grazing systems, fire regimes and iconic wildlife. These effects will pose challenges and require adaptation of livelihoods and industries dependent on conditions currently prevailing.  相似文献   

9.
Reindeer influence on ecosystem processes in the tundra   总被引:8,自引:0,他引:8  
J. Olofsson  S. Stark  L. Oksanen 《Oikos》2004,105(2):386-396
Reindeer have been recorded to increase nutrient cycling rate and primary production in studies from fences almost 40 years old that separate areas with different grazing regimes in northern Fennoscandia. To further understand the mechanism behind the effects of herbivores on primary production, we measured the size of the major C and N pools, soil temperature, litter decomposition rate and N mineralization rate in lightly, moderately and heavily grazed areas along two of these fences.
Plant N found in new biomass, indicative of plant N assimilation, was significantly higher in moderately and heavily grazed areas than in lightly grazed areas, which corresponded to a decreased amount of N in old plant parts. The amount of N found in plant litter or organic soil layer did not differ between the grazing treatments. Together with soil N concentrations and litter decomposition rates, soil temperatures were significantly higher in moderately and heavily grazed areas.
We conclude that the changes in soil temperature are important for the litter decomposition rate and thus on the nutrient availability for plant uptake. However, the changes in plant community composition appear to be more important for the altered N pools and thus the enhanced primary production. The results provide some support for the keystone herbivore hypothesis, which states that intensive grazing can promote a transition from moss-rich tundra heath to productive grasslands. Grazing altered N fluxes and pools, but the total N pools were similar in all grazing treatments. Our study thus indicates that grazing can increase the primary production through enhancing the soil nutrient cycling rate, even in a long term perspective on an ecological timescale.  相似文献   

10.
Abstract. In the Tunisian arid zone disturbances (e.g. overgrazing and agriculture) and stresses (e.g. aridity, low fertility) drive changes in the structure and functioning of rangelands, with a decrease in perennial plant cover, changes in floristic composition and erosion. Long‐term monitoring requires (1) an understanding of the dynamics of vegetation change and associated ecological processes and (2) identification of relevant indicators. Using data from the arid zone of southern Tunisia we tested the hypothesis that plant functional response types could be used to address these two goals. We identified plant functional response types in response to a gradient of soil and vegetation types characterized by changes in perennial plant cover, dominant species and associated soil types. Vegetation samples were stratified by contrasted vegetation patch types with varying perennial plant cover (1.6 to 22%). We focused our analysis of trait responses within dwarf–shrubs, which are the dominants in typical steppe ecosystems of south Tunisia. Available trait data concerned morphology (plant height, leaf type), regeneration (dispersal mode, phenology and regeneration mode) and grazing value. Although we found it difficult to recognize ‘indicator response types’ that could be used directly to monitor changes in community composition, we were able to identify plant response syndromes that are relevant to long‐term vegetation changes, and in particular degradation processes, in the region. Two main response types were identified: the decreaser type, made up of small or medium chamaephytes with high grazing palatability and the increaser type with medium to tall chamaephytes and low grazing palatability. These response types are proposed as key elements in a state‐and‐transition model of vegetation dynamics in the context of agropastoral disturbances and climatic and edaphic stresses.  相似文献   

11.
Climate warming is expected to have a large impact on plant species composition and productivity in northern latitude ecosystems. Warming can affect vegetation communities directly through temperature effects on plant growth and indirectly through alteration of soil nutrient availability. In addition, warming can cause permafrost to thaw and thermokarst (ground subsidence) to develop, which can alter the structure of the ecosystem by altering hydrological patterns within a site. These multiple direct and indirect effects of permafrost thawing are difficult to simulate in experimental approaches that often manipulate only one or two factors. Here, we used a natural gradient approach with three sites to represent stages in the process of permafrost thawing and thermokarst. We found that vascular plant biomass shifted from graminoid-dominated tundra in the least disturbed site to shrub-dominated tundra at the oldest, most subsided site, whereas the intermediate site was co-dominated by both plant functional groups. Vascular plant productivity patterns followed the changes in biomass, whereas nonvascular moss productivity was especially important in the oldest, most subsided site. The coefficient of variation for soil moisture was higher in the oldest, most subsided site suggesting that in addition to more wet microsites, there were other microsites that were drier. Across all sites, graminoids preferred the cold, dry microsites whereas the moss and shrubs were associated with the warm, moist microsites. Total nitrogen contained in green plant biomass differed across sites, suggesting that there were increases in soil nitrogen availability where permafrost had thawed.  相似文献   

12.
Kröpfl AI  VA Deregibus  GA Cecchi 《Phyton》2015,84(2):390-396
We developed a functional model for a shrub steppe vegetation of the eastern Monte Phytogeographical Province in Río Negro (Argentina) with six stable states and 12 transitions, based on the woody encroachment degree, characteristics of the herbaceous layer and the soil surface, and biological crust cover. Information was obtained from letters of naturalists and travelers along the region since the late eighteenth century, reports of old settlers, and our own research work. On the Monte, different functional groups can be distinguished. Our work focused on the three most conspicuous to analyze the dynamics of the system: shrubs, grasses and biological crust. The shrub layer is only affected by large-scale disturbances (fire, mechanical clearing) which maintain the balance between grasses and shrubs in the system. Mechanical clearing with soil removal also causes a decrease in grass cover and vegetation diversity. This layer, however, is most frequently affected by intensive and continuous grazing, which reduces the occurrence of fires and shifts the equilibrium toward the shrubs. All disturbances in general deteriorate the biological crust that covers the soil, which offers situations of facilitation for the regeneration of the herbaceous layer. Grazing and mechanical clearing reduce soil cover and promote the development of soil compaction, which reduce water infiltration and germination and/or seedling establishment, and this creates deteriorated states difficult to reverse. Those states can also be produced by tillage for agriculture and stubble grazing. Some of the transitions that we describe can be favored through grassland management strategies, in order to reach higher states of pastoral value and reverse deteriorating situations.  相似文献   

13.
The stress gradient hypothesis (SGH) predicts that the importance or intensity of competition and facilitation will change inversely along abiotic stress gradients. It was originally postulated that increasing environmental stress can induce a monotonic increase in facilitation. However, more recent models predicted that the relationship between severity and interaction exhibits a hump‐shaped pattern, in which positive interactions prevail under moderate stress but decline at the extreme ends of stress gradients. In the present study, we conducted a field experiment along a temporal rainfall gradient for five consecutive years, in order to investigate interactions in a shrub‐herbaceous plant community at the southern edge of the Badain Jaran Desert, and, more specifically, investigated the effects of Calligonum mongolicum, a dominant shrub species, on both abiotic environmental variables and the performance of sub‐canopy plant species. We found that shrubs can improve sub‐canopy water regimes, soil properties, plant biomass, density, cover, and richness and, more importantly, that the positive effect of shrubs on sub‐canopy soil moisture during the summer diminishes as rainfall decreases, a pattern that partly explains the collapse of the positive interaction between shrubs and their understory plants. These results provide empirical evidence that the positive effect of shrubs on understory plant communities in extreme arid environments may decline and become neutral with increasing drought stress.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) have a significant influence on plant productivity and diversity in non-grazing grassland. However, the interactive effects between grazing intensity and AMF on plant community composition in natural grassland communities are not well known. We conducted a field experiment that manipulated AMF colonization and grazing intensity to study the impact of AMF suppression on plant community composition and nutrient status over 2 years (2015–2016) with contrasting rainfall levels. We found that AMF root colonization was significantly reduced by the application of the fungicide benomyl as a soil drench. Grazing intensity regulated plant community composition and aboveground biomass mainly by reducing the growth of Leymus chinensis over 2 years. AMF suppression increased the growth of Chenopodium glaucum, but it did not alter other plant species across all grazing intensities. The effects of AMF suppression on plant community composition changed along a grazing gradient considerably between years: AMF suppression increased the biomass of C. glaucum across all grazing intensities in 2015, but slightly increased it in 2016. Interactions between AMF suppression and grazing intensity altered the phosphorus concentration of Stipa grandis and Cleistogenes squarrosa in 2015 but not in 2016. AMF suppression decreased the shoot phosphorus content of L. chinensis but increased that of C. glaucum across all grazing intensities. Our results indicate that grazing intensity substantially alters aboveground community biomass and affects growth of dominant species; AMF by itself have limited effects on plant communities along a grazing gradient in typical steppe.  相似文献   

15.
Grasslands in northern China and the Qinghai-Tibetan plateau are particularly important to both ecosystem functioning and pastoral livelihoods. Although there are numerous degradation studies on the effect of livestock grazing across the region, they are largely only published in Chinese, and most focus on single sites. Based on case studies from 100 sites, covering a mean annual precipitation gradient of 95–744 mm, we present a comprehensive, internationally accessible review on the impact of livestock grazing on vegetation and soils. We compared ungrazed or slightly grazed sites with moderately and heavily grazed sites by evaluating changes in two indicator groups: vegetation (plant species richness, vegetation cover, aboveground biomass, belowground biomass and root/shoot ratio) and soil (pH, bulk density, organic C, total N, total P and available P). Most indicators declined with intensified grazing, while soil pH, bulk density and belowground biomass increased. Available P showed no clear response. Variables within indicator groups were mostly linearly correlated at a given grazing intensity. Relative grazing effects on different indicators varied along specific abiotic gradients. Grazing responses of plant species richness, aboveground biomass, soil bulk density, total N and available P interacted with precipitation patterns, while grazing effects on belowground biomass were influenced by temperature. Elevation had impact on grazing responses of aboveground biomass and soil organic carbon. Complex grazing effects reflect both methodological inconsistency and ecological complexity. Further assessments should consider specific characteristics of different indicators in the context of the local environment.  相似文献   

16.
Water‐limited ecosystems have undergone rapid change as a consequence of changing land use and climate. The consequences of these changes on soil quality and vegetation dynamics have been documented in different regions of the world. In contrast, their effects on soil water, the most limiting resource in these environments, have received less attention, although in recent years increasing efforts have been made to relate grazing, soil water and vegetation functioning. In this paper, we present the results of field observations of plant phenology and soil water content carried out during two successive years at four sites along a degradation gradient caused by grazing in the Patagonian Monte, Argentina. We also developed a simplified soil water balance model to evaluate how changes in plant cover could affect water balance. Our field observations showed that the soil water content in the soil layer where roots of grasses are abundant (0–25 cm) was higher and the growing cycles were longer in degraded than in preserved sites. Similarly, our modelling approach showed that the deep soil (depth > 10 cm) was wetter in the degraded than in the preserved situation. Simulation also suggested a switch from transpiration to a direct evaporation dominance of water losses with degradation. Although reductions in plant cover related to grazing degradation were associated with a decrease in annual transpiration, the simulated soil water loss by transpiration was higher during summer in the degraded than in the well preserved situation. Thus, our field observations seem to be a consequence of ecohydrological changes causing an accumulation of water in the soil profile during the cold season and its transpiration during summer. In conclusion, our results showed that changes in plant cover caused by grazing disturbance can alter the soil water balance, which in turn can affect vegetation function.  相似文献   

17.
The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance.  相似文献   

18.
Selective sheep grazing in arid rangelands induces a decrease in total cover and grass cover and an increase in the dominance of shrubs. Both life forms differ in aboveground and belowground traits. We hypothesized that grazing disturbance leads to the replacement of grass by shrub fine roots in the upper soil, and this is reflected in changes in the seasonal dynamics of shallow fine roots at the community level. In two sites representative of non-grazed and grazed vegetation states in the Patagonian Monte, we assessed the canopy structure, and the fine root biomass, N concentration, production, and turnover during two consecutive years. The non-grazed site exhibited higher total, grass, and shrub cover than the grazed site. The grazed site had larger or equal fine root biomass than the non-grazed site except for late spring of the second year. This could be associated with the ability of shrubs to develop dimorphic-root systems occupying the soil freed by grasses at the grazed site, and with the larger contribution of grass than shrub fine roots in relation to an extraordinary precipitation event at the non-grazed site. This was consistent with the N concentration in fine roots. Fine root production was positively correlated to temperature at the grazed site and with precipitation at the non-grazed site. Fine root turnover did not differ between sites. Our results indicate that grazing leads to a shifting in the seasonality and main climatic controls of fine root production, while fine root turnover is mostly affected by changes in soil water conditions.  相似文献   

19.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

20.
In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition into account. In a salt-marsh system, the long-term effects of exclusion of a large herbivore (cattle) on the abundance of a small herbivore (hare) were studied. Excluding cattle grazing for 30 years resulted in large changes in vegetation composition. In general, the cover of tall-growing species increased in the absence of cattle grazing. These long-term changes negatively affected hare grazing intensity. Hares preferentially fed on Festuca rubra and negatively selected tall growing plants, such as Elymus athericus, both in cattle-grazed and long-term ungrazed areas. However, the intensity of hare grazing was not related to the cover of F. rubra. The cover of tall-growing plants (E. athericus, Atriplex prostrata and Juncus maritimus) appeared to be the best predictor and hare grazing intensity decreased sharply with an increase of the cover of tall plants. When cover of tall plants did not increase, hare grazing intensity was not affected. The study shows that the time-scale of the experiment is of prime importance in studying interactions between herbivores. Species that do not seem to influence the abundance of one another or are competing for the same resources on a short time-scale might well be facilitating each other when looking at larger time-scales while taking plant species replacement into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号