首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

2.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

3.
Plant community diversity and ecosystem function are conditioned by competition among co-occurring species for multiple resources. Previous studies suggest that removal of standing biomass by grazing decreases competition for light, but coincident grazing effects on competition for soil nutrients remain largely unknown in Tibetan rangelands where grazing tends to deplete soil phosphorus availability. We measured five functional traits indicative of plant productivity and stoichiometry leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC) for component species of plant communities in grazed and ungrazed plots in five Tibetan alpine meadows. We examined the diversity of traits singly Rao index of functional diversity (FDrao) and in aggregate functional richness (FRic), functional divergence (FDiv), and functional evenness (FEve) in response to grazing. We tested whether foliar trait diversity increases with nutrient competition but decreases with light competition when competitive exclusion is reduced by grazing. The FDrao of LPC significantly increased under grazing, but FDrao for LCC, LNC and SLA tended to decrease. The FDrao of LDMC increased at the drier site but decreased at the wettest site. There was a strong negative association between increase in FDrao of LPC and decrease in soil nutrients, especially soil phosphorus availability. The FRic for all five traits together increased with species diversity following grazing, but neither FDiv nor FEve differed significantly between grazed and ungrazed plots at most sites. Grazing in Tibetan alpine meadows tends to increase competition for soil phosphorus while decreasing competition for light, resulting in an increase in the functional richness in grazed plant communities without any significant changes in the overall functional diversity of foliar traits. Our study highlights the potential importance of grazing mediated competition for multiple resources in alpine meadow ecosystems.  相似文献   

4.
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida) 6个草地群落为对象, 研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明: 1)在个体水平上, 放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地, 植物在放牧干扰下表现出明显的小型化现象; 2)在群落水平上, 放牧亦显著降低了群落总生物量和茎、叶生物量; 3)过度放牧显著改变了物种的资源分配策略, 使生物量向叶的分配比例增加, 向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策; 4)轻度放牧对物种的资源分配没有显著影响, 单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势, 这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略, 进而对生态系统功能产生重要的影响。  相似文献   

5.
Preliminary results are presented of sampling the leafhopper assemblages on a field experiment designed to examine the differential effects of rabbits and livestock (mainly sheep) on the vegetation of chalk heath in southern England. Experimental plots that excluded livestock either allowed entry by rabbits or excluded them. Results were compared with those from plots grazed by both livestock and rabbits. After 7 years, exclusion of grazing herbivores had resulted in predictable increases in vegetation height, but no major changes were detected in the species composition of the vegetation. As expected, ungrazed plots had higher species richness and greater abundances of several individual leafhopper species. However, plots grazed only by rabbits had a leafhopper assemblage that was distinct from either ungrazed or mixed grazing plots. It is suggested that rabbit grazing may have subtle effects on grassland invertebrate assemblages that are not necessarily predictable from an examination of the species composition of the vegetation. Chalk heath vegetation contains an unusual mixture of calcicole and calcifuge plant species, but the leafhopper assemblage included a restricted number of calcareous grassland specialist species and only one species strongly associated with acidic grasslands; most leafhoppers recorded were generalist grassland species.  相似文献   

6.
放牧对青藏高原高寒草地种子萌发性状选择的影响 以前的研究表明放牧能够引起草地生物与非生物环境的显著变化,但这种变化影响草地群落对种子萌发特征的选择机制尚不清楚。因此,我们旨在回答:放牧是否对草地群落中萌发特征的组成和多样性产生显著影响。我们在实验室检测了研究草地群落内主要物种种子的萌发特性,并比较了这些植物在放牧和非放牧草地上的表现。在此基础上,比较了放牧草地和非放牧草地的各萌发性状的群落加权平均值和萌发性状多样性,从而了解放牧草地和非放牧草地是否存在不同的萌发性状结构。研究结果表明,在物种水平上,放牧和非放牧草地各物种的多度变化与物种的萌发性状无显著关系。但在群落水平上,与非放牧草地相比,放牧草地的物种普遍具有较高的种子萌发率;放牧草地种子萌发对变温的正响应显著大于非放牧草地,而且放牧草地种子萌发温度生态位宽度小于非放牧草地。与非放牧草地相比,放牧草地种子萌发性状多样性增加,萌发性状均匀度降低。放牧可以改变微生境,从而通过环境过滤改变草地群落对萌发性状的选择,导致草地群落的萌发性状于放牧前后在群落水平上存 在显著差异。  相似文献   

7.
Livestock exerts direct and indirect effects on plant communities, changing colonization and extinction rates of species and the surrounding environmental conditions. There is scarce knowledge on how and to what extent these effects control the floristic and functional composition of plant communities in grasslands. We performed an experiment that included several treatments simulating trampling, defoliation, faeces addition and their combinations in a Mediterranean scrub community grazing-abandoned for at least 50 years. We monitored the plots for four years, and collected data on species composition, photosynthetically active radiation (PAR) and red∶far-red ratio (R∶FR), soil moisture and compaction. We estimated community weighted means (CWM) for height, habit, life cycle, seed mass and SLA. Neither compaction nor soil moisture were modified by the treatments, while PAR and R∶FR increased in all treatments in comparison to the Control and Faeces treatments. The floristic composition of all treatments, except for Faeces, converged over time, but deviated from that of the Control. The functional traits displayed the trends expected in the presence of grazing: loss of erect species and increased cover of short species with light seeds, with rosettes and prostrate habit. However, contrary to the results in literature, SLA was lower in all the treatments than Control plots. Like the results for floristic composition, all treatments except for Faeces converged towards a similar functional composition at the end of the four year period. The results of this study show the initial evolution of a Mediterranean plant community in the presence of grazing, driven primarily by the destructive action of livestock. These actions seem to directly affect the rates of extinction/colonization, and indirectly affect the light environment but not the soil conditions. However, their effects on floristic and trait composition do not seem to differ, at least at the small spatio-temporal scale.  相似文献   

8.
Question: Which management treatments are suitable to replace historically applied grazing regimes? How and why does vegetation structure change following changes in management? Location: Semi‐natural calcareous dry grasslands in southwest Germany. Methods: We analysed changes in floristic and functional composition induced by different management treatments (grazing, mowing, mulching, succession) in long‐term experimental sites. First, floristic and functional distances between the initial conditions and the following years were determined. Second, we used RLQ analyses to include data on abiotic conditions, vegetation composition and functional traits in one common analysis. Finally, we applied cluster analyses on RLQ species scores to deduce functional groups. Results: In contrast to the historical management regime of grazing, all alternative management treatments led to changes in floristic and functional composition, depending on their intensity with respect to biomass removal. The distance analyses showed that mulching twice per year and mowing did not lead to strong changes in floristic or functional composition. However, RLQ analysis clearly provided evidence that only the grazed sites are in equilibrium, indicating that vegetation change still goes ahead. Conclusions: The current study clearly shows that RLQ is a powerful tool to elucidate ongoing processes that may remain hidden when separately analysing floristic and functional data. Alternative management treatments are not appropriate to sustain the typical disturbance dynamics of species‐rich semi‐natural grasslands. The less frequent an alternative management treatment is with respect to biomass removal, the less the floristic and functional structure can be maintained.  相似文献   

9.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

10.
Ecological restoration provides a means to increase biodiversity in ecosystems degraded by natural and human‐induced changes. In some systems, disturbances such as grazing can be key factors in the successful restoration of biodiversity and ecological function, but few studies have addressed this experimentally, especially over long time periods and at landscape scales. In this study, we excluded livestock grazing from plots within a grassland landscape containing vernal pools in the Central Valley of California for 10 years and compared vernal pool hydrology and plant community composition with areas grazed under an historic regime. In all 10 years, the relative cover of native plant species remained between 5 and 20% higher in the grazed versus ungrazed plots. This effect was particularly prominent on the pool edges, though evidence of invasion into the pool basins was evident later in the study. Native species richness was lower in the ungrazed plots with 10–20% fewer native species found in ungrazed versus grazed plots in all years except the first year of treatment. Ungrazed pools held water for a shorter period of time than pools grazed under an historic regime. By the ninth year of the study, ungrazed pools took up to 2 weeks longer to fill and dried down 1–2 weeks sooner at the end of the rainy season compared to grazed pools. The results of this study confirm that livestock grazing plays a key role in maintaining biodiversity and ecosystem function in vernal pools.  相似文献   

11.
Plant-soil feedbacks are widely recognized as playing a significant role in structuring plant communities through their effects on plant-plant interactions. However, the question of whether plant-soil feedbacks can be indirectly driven by other ecological agents, such as large herbivores, which are known to strongly modify plant community structure and soil properties, remains poorly explored. We tested in a glasshouse experiment how changes in soil properties resulting from long-term sheep grazing affect competitive interactions (intra- and inter-specific) of two graminoid species: Nardus stricta, which is typically abundant under high sheep grazing pressure in British mountain grasslands; and Eriophorum vaginatum, whose abundance is typically diminished under grazing. Both species were grown in monocultures and mixtures at different densities in soils taken from adjacent grazed and ungrazed mountain grassland in the Yorkshire Dales, northern England. Nardus stricta performed better (shoot and root biomass) when grown in grazing-conditioned soil, independent of whether or not it grew under inter-specific competition. Eriophorum vaginatum also grew better when planted in soil from the grazed site, but this occurred only when it did not experience inter-specific competition with N. stricta. This indicates that plant-soil feedback for E. vaginatum is dependent on the presence of an inter-specific competitor. A yield density model showed that indirect effects of grazing increased the intensity of intra-specific competition in both species in comparison with ungrazed-conditioned soil. However, indirect effects of grazing on the intensity of inter-specific competition were species-specific favouring N. stricta. We explain these asymmetric grazing-induced effects on competition on the basis of traits of the superior competitor and grazing effects on soil nutrients. Finally, we discuss the relevance of our findings for plant community dynamics in grazed, semi-natural grasslands.  相似文献   

12.
Abstract. Effects of grazing and environment on vegetation structure have been widely acknowledged, but few studies have related both factors. We made 57 floristic samples in a highly variable landscape of mountain grasslands in central Argentina; 26 sample were in fence‐lines with contrasting vegetation. For each sample, we recorded topographic and edaphic parameters, as well as grazing intensity indicators. Floristic gradients were analysed with DCA and relations with abiotic and grazing‐related variables were detected with DCCA. Floristic axis 1 was explained by edaphic parameters associated to topography, ranging from communities in well drained soils on upper topographic positions to hydromorphic vegetation in poorly drained soils on lower topographic positions. Species richness decreased as soil moisture increased. Floristic axis 2 was associated with present and long‐term grazing indicators, and reflected shifts in vegetation physiognomy and species evenness. Tall tussock grasslands, with low species evenness and evidences of low or null grazing intensity were located at one extreme. Tussocks were gradually replaced by short graminoids and forbs towards the centre of the gradient, as grazing increased, and evenness reached a maximum. In degraded sites with heavy long‐term grazing intensities, short perennial species were replaced by an annual species, and evenness decreased. The magnitude of changes in floristic composition produced by grazing decreased with increasing soil moisture, and vegetation‐environment relationships were stronger in moderate to highly grazed situations than in lightly or non grazed situations.  相似文献   

13.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

14.
Question: Does long‐term grazing exclusion affect spatial patterns of canopy height, plant species and traits in subalpine grassland communities? Are spatial patterns of species and traits similarly affected by grazing exclusion? Are changes in spatial patterns of species associated with changes in species abundances? Location: Subalpine grasslands, Vercors and Oisans Mountains, Alps (France). Methods: Spatial sampling of vegetation and measurements of plant traits were carried out within nine pairs of grazed and ungrazed 10 m × 10‐m plots in three species‐rich communities with different productivities. We estimated within‐plot spatial patterns of canopy height, species and aggregated trait values by measuring the extent (or patch size) and intensity of spatial dependence with Moran's I. Abundance‐weighted averages for species patch size and intensity of spatial dependence were calculated across all species per plot and across species per life form. Such measures derived from analysis of spatial dependence were considered spatial traits. Results: Response of spatial patterns to grazing exclusion was only detected in patch size, whereas intensity of spatial dependence was not affected. Changes in spatial patterns were community‐dependent because spatial traits based on patch size of canopy height and species increased following grazing exclusion only in the less productive community. Unexpectedly, changes in spatial patterns of species did not support changes in spatial patterns of trait values. Abundances and patch sizes of several life forms were significantly affected by grazing exclusion. However, at the scale investigated, changes in abundance of life forms did not correspond to changes in their spatial patterns and vice versa. Conclusion: In species‐rich communities, grazing alters spatial spread of species (i.e. patch size) rather than intra‐specific aggregation (i.e. intensity of spatial dependence). Results revealed possible mechanisms of species spatial reorganisation that are independent of abundance variation. Therefore, it is important to consider changes in spatial patterns in addition to changes in mean values of vegetation features when assessing impacts of grazing management.  相似文献   

15.
Question: What are the effects of grazing abandonment on the vegetation composition of Estonian coastal wetlands? Location: Vormsi Island and Silma Nature Reserve in western Estonia, Europe. Methods: Local knowledge and field reconnaissance were used to identify current and historical management levels of wetland sites within the west Estonian study area. Nine study sites, with varying management histories, were selected comprising an area of 287 ha. A total of 198 quadrats were taken from 43 distinct vegetation patches in five of the sites. TWINSPAN analysis was used to identify community type, and a phytosociological key was constructed for character taxa. This vegetation classification was then applied within a GIS‐based context to classify all the study sites, using a ground survey technique and 1:2000 scale air photos. Results: We identified 11 different brackish coastal wetland community types. Indicator species were defined with community characteristics for the seven main vegetation types readily recognisable in the field. Coastal wet grasslands were most extensive in grazed sites, or sites that had been more intensively grazed, while abandoned sites were largely composed of Phragmites australis stands, tall grassland, and scrub. Site variations based on vegetation composition were significantly correlated with past grazing intensity. Plant community types showed significant edaphic differences, with particularly low soil moisture and high conductivity and pH for open pioneer patches compared to other vegetation types. Conclusion: Abandonment of traditionally grazed coastal grasslands threatens their characteristic biodiversity. This study found that grazing abandonment reduced the extent of coastal wetland grasslands of particular conservation value. Nevertheless, plant species of conservation interest were found across the sequence of community types described. The study shows that grazing is an important factor influencing coastal wetland plant communities but suggests that vegetation distribution is affected by environmental variables, such as topography.  相似文献   

16.
Low-intensive grazing is a widely used management tool to conserve the outstanding biodiversity of calcareous grasslands. As conservation management is cost-intensive and often hampered by limited financial resources, combining adequate management for biodiversity conservation with feasible livestock production may be relevant for both conservationists and land managers. However, profound knowledge of the effect of grazing in non-intensively used grasslands on seasonal variation in biomass quality is scarce. We analyzed the floristic composition, abiotic soil properties and the chemical composition of aboveground biomass in a grazed calcareous grassland in NW Germany. Sampling took place in monthly intervals during one growing season. To separate the impact of grazing and non-grazing on biomass quality, an exclosure experiment was performed. Floristic composition of the studied calcareous grasslands was mainly related to two gradients representing the trophic status and the long-term management intensity. Differences in abiotic site conditions were hardly reflected by nutrient concentrations in the biomass. Irrespectively of abiotic site conditions, the chemical composition of the biomass showed a clear seasonal trend. Nutrient concentrations strongly declined from May to July but increased again in August, probably because of favourable current-year weather conditions. Sheep grazing improved biomass quality indicating that grazing modifies the environment beneficially for the animals. We conclude that early spring and late summer grazing is an appropriate management scheme to balance requirements of both feasible livestock production and biodiversity conservation, which is promising for sustainable and long-term conservation management.  相似文献   

17.
Lately there has been a shift in Sweden from grazing species‐rich semi‐natural grasslands towards grazing ex‐arable fields in the modern agricultural landscape. Grazing ex‐arable fields contain a fraction of the plant species richness confined to semi‐natural grasslands. Still, they have been suggested as potential target sites for re‐creation of semi‐natural grasslands. We asked to what extent does fine‐scale variation in soil conditions, management history and site location effect local plant diversity in grazed ex‐arable fields. We examined local soil conditions such as texture, pH, organic carbon, nitrogen (N) and extractable phosphate (P) and effects on plant richness in ten pairs of grazed ex‐fields and neighbouring semi‐natural grasslands in different rural landscapes. Each grassland pair where in the same paddock. A multivariate test showed that site location and land use history explained more of differences in species richness than local soil property variables. Plant species richness was positively associated to grazed ex‐fields with low pH, low N and P levels. Sites with high plant richness in semi‐natural grasslands also had more species in the adjacent grazed ex‐fields, compared to sites neighbouring less species‐rich semi‐natural grasslands. Although both soil properties and species richness were different in grazed ex‐fields compared to semi‐natural grassland, the site location within a landscape, and vicinity to species‐rich grasslands, can override effects of soil properties. In conclusion, if properly located, ex‐arable fields may be an important habitat to maintain plant diversity at larger spatio‐temporal scales and should considered as potential sites for grassland restoration.  相似文献   

18.
Continuous livestock grazing can have negative effects on biodiversity and landscape function in arid and semi‐arid rangelands. Alternative grazing management practices, such as rotational grazing, may be a viable option for broad‐scale biodiversity conservation and sustainable pastoral management. This study compared ground cover, plant species composition and floristic and functional diversity along gradients of grazing intensity between a pastoral property rotationally grazed by goats and an adjacent nature reserve (ungrazed by commercial livestock) in semi‐arid south‐eastern Australia. Understorey plant species composition differed significantly between the rotationally grazed property and the nature reserve, with a greater proportion and frequency of palatable species recorded in the nature reserve. Understorey plant species richness, diversity, functional biodiversity measures and ground cover declined with increasing grazing pressure close to water points under commercial rotational grazing management. However, at a whole‐paddock scale, there were few differences in plant biodiversity and ground cover between the rotationally grazed property and the nature reserve, despite differences in overall plant species composition. Flexible, adaptive, rotational grazing should be investigated further for its potential to achieve both socio‐economic and biodiversity conservation outcomes in semi‐arid rangelands to complement existing conservation reserves.  相似文献   

19.
Human activities have caused dramatic land use changes, impacting plant community composition, diversity and function. Fertilization and grazing are the two most common land use modes in grasslands. To understand the effects of grazing and fertilization on sexual and asexual recruitment in alpine grasslands, we conducted a demographic field investigation of species recruitment in an alpine meadow on the Tibetan Plateau. Grazing and fertilization had different effects on the quantity and diversity of sexual and asexual recruitment. Sexual recruitment increased significantly in grazed plots, but decreased significantly in fertilized plots. Asexual recruitment increased significantly in fertilized plots, but decreased significantly in grazed plots. For functional groups, grazing significantly reduced offspring recruitment of graminoids, but significantly increased offspring recruitment of forbs and legumes; fertilization significantly reduced offspring recruitment of forbs and legumes, but significantly increased offspring recruitment of graminoids. Furthermore, offspring diversity from sexual recruitment was significantly higher than from asexual recruitment in grazed plots, and as compared to non‐grazed and fertilized grasslands. Our studies indicate that moderate grazing disturbance has positive effects on seedling recruitment and offspring diversity, and fertilization has negative effects on offspring diversity, but may significantly increase asexual recruitment.  相似文献   

20.
We investigated the responses of the ground vegetation in a 17‐year‐old coastal dune forest plant community to four levels of experimentally applied livestock grazing (three grazing levels and one ungrazed control) from May 1994 to March 1996. The effects of grazing were apparently subordinate to site‐specific intrinsic vegetation change and there were some indications that rainfall interacted with grazing level. Grazing had some apparent but no significant effects on plant species composition, significantly affected plant species richness over time, and significantly increased the range of species richness and vegetation cover values as well as the relative abundance and numbers of plant species with erect growth forms. Vegetation cover changed significantly over time, independently of grazing. Our results point to two important, easily measured mechanisms for the conservation management of coastal dune forests – the interaction of disturbance type with plant growth form and the increase of variation in community structural variables under disturbance. These mechanisms, although they potentially have wide application and predictive power, have not been studied adequately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号