首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha−1 y−1 for eight weeks, to achieve a total application of 35 kg ha−1 during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33–83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33–66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.  相似文献   

2.
To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead–zinc (Pb–Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb–Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank–abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (S?rensen similarity index?=?0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2?% of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the concentrations of Pb, Zn, and Cd. In conclusion, our results suggest that ectomycorrhizal fungal communities in mining areas are not necessarily affected by heavy metals themselves but could be largely determined by soil maturity.  相似文献   

3.
Metals are toxic to both plants and fungi, and elevated soil metal concentrations have been documented to change the structure of ectomycorrhizal communities. Mercury (Hg) is a highly toxic metal and inhibits the growth of ectomycorrhizal fungi (ECMF) in axenic culture. However, the effects of Hg on the growth of tree seedlings and the development of their ECMF communities have not been explored. In the current study, Pinus rigida seedlings were planted in soil amended with 0–366 μg g?1 Hg and incubated for 5 months. Survival and growth of P. rigida seedlings was determined, and their ECMF communities were characterized by morphotype analysis. Seedling survival declined with increasing Hg additions, although no reduction in growth was detected among surviving seedlings. The addition of 88 μg g?1 Hg to soil more than halved the total ectomycorrhizal colonization of root tips and reduced both richness and diversity of root tip morphotypes, while lower Hg additions did not significantly affect ECMF community composition relative to the no Hg control. This suggests that changes in the community of ECMF may occur in contaminated soils before any aboveground effects on surviving seedlings are noticeable, potentially altering the contribution of ECMF to the fitness of established host plants.  相似文献   

4.
在液体培养基中设置无磷、低磷、中磷和高磷四种磷浓度,离体培养松乳菇Lactarius deliciosus的3个株系Ld-01、Ld-02、Ld-03和双色蜡蘑Laccaria bicolor S238N,分别测定外生菌根真菌的生长量、草酸、氢离子和酸性磷酸酶分泌速率。结果表明,在中磷的条件下,外生菌根真菌的生长最好,无磷、低磷或高磷对它们的生长产生抑制作用,抑制程度因菌种(株)不同而异。草酸、氢离子和酸性磷酸酶的分泌速率顺序为:无磷(0gNaH2PO4/L)>低磷(0.229gNaH2PO4/L)>中磷(1.147gNaH2PO4/L)>高磷(5.735gNaH2PO4/L),表现出明显的种(株)间差异,看来外源磷的供应状况可能有调节外生菌根真菌活化土壤无机磷和有机磷的作用。在缺磷和低磷条件下,外生菌根真菌具有较强的活化作用,在足磷的条件下活化作用减小,由此有效地利用土壤中的磷。  相似文献   

5.
Soybean plants can form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal (AM) fungi, but little is known about effects of co-inoculation with rhizobia and AM fungi on plant growth, or their relationships to root architecture as well as nitrogen (N) and phosphorus (P) availability. In the present study, two soybean genotypes contrasting in root architecture were grown in a field experiment to evaluate relationships among soybean root architecture, AMF colonization, and nodulation under natural conditions. Additionally, a soil pot experiment in greenhouse was conducted to investigate the effects of co-inoculation with rhizobia and AM fungi on soybean growth, and uptake of N and P. Our results indicated that there was a complementary relationship between root architecture and AMF colonization in the field. The deep root soybean genotype had greater AMF colonization at low P, but better nodulation with high P supply than the shallow root genotype. A synergistic relationship dependent on N and P status exists between rhizobia and AM fungi on soybean growth. Co-inoculation with rhizobia and AM fungi significantly increased soybean growth under low P and/or low N conditions as indicated by increased shoot dry weight, along with plant N and P content. There were no significant effects of inoculation under adequate N and P conditions. Furthermore, the effects of co-inoculation were related to root architecture. The deep root genotype, HN112, benefited more from co-inoculation than the shallow root genotype, HN89. Our results elucidate new insights into the relationship between rhizobia, AM fungi, and plant growth under limitation of multiple nutrients, and thereby provides a theoretical basis for application of co-inoculation in field-grown soybean.  相似文献   

6.
While there has been much recent interest about the relationships between plant diversity and plant productivity, much remains unknown about how the diversity of mycorrhizal fungi affects plant productivity. We investigated the effects of ectomycorrhizal fungal community composition and diversity on the productivity and growth characteristics of seedlings of two tree species ( Pinus sylvetris and Betula pendula ) as well as their interactions with each other. This involved setting up a mycorrhizal fungal diversity gradient from one to eight species using a design previously demonstrated to be able to separate diversity effects from compositional effects. We found that the eight mycorrhizal fungal species differed in their effects on seedling productivity and that the nature of effects was determined by the fertility of the substrate. Fungal species richness effects were also important in affecting seedling productivity over and above what could be explained by "sampling effect" but only in some situations. For B. pendula in a low fertility substrate there were clear positive causative effects between fungal species richness and productivity with the eight species treatment having over double the productivity of any of the eight monoculture treatments; no diversity effects were, however, detected in a high fertility substrate. For P. sylvestris in a high fertility substrate there were significant negative effects of fungal diversity on productivity while in a low fertility substrate no effects were apparent. The possible mechanistic bases for these results are discussed. The growth of P. sylvestris relative to that of B. pendula when grown in combination was unaffected by mycorrhizal treatments. Our results provide clear evidence that effects of mycorrhizal fungal diversity on productivity are context dependent and may be positive, negative or neutral depending on the situation considered.  相似文献   

7.
Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape‐scale moisture, organic matter and productivity gradients. Using high‐throughput sequencing, we identified soil fungi from 54 low‐productivity Pinus sylvestris‐dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low‐productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.  相似文献   

8.
Wallander  Håkan  Wickman  Tonie  Jacks  Gunnar 《Plant and Soil》1997,196(1):123-131
The objectives of the study are firstly to test the ability of ectomycorrhizal pine seedlings to use apatite as a P source in comparison with non-mycorrhizal pine seedlings and secondly, to determine if there is a relation between exudation of organic acids and the ability to use apatite as a P source. Non-mycorrhizal Pinus sylvestris (L.) seedlings and seedlings ectomycorrhizal with 4 different isolates of ectomycorrhizal fungi were grown for 220 days in sand/peat filled pots with apatite (Ca5(F,OH)(PO4)3) as the sole P source. In an additional experiment, non-mycorrhizal Pinus sylvestris (L.) seedlings and seedlings ectomycorrhizal with 2 different isolates of ectomycorrhizal fungi were grown without any P source for 250 days. All other nutrients were supplied in a balanced nutrient solution.Ectomycorrhizal seedlings grew less than non-mycorrhizal seedlings but ectomycorrhizal seedlings produced a large external mycelium not included in the biomass estimates. All seedlings in the present study had low shoot:root ratios compared to seedlings growing under optimal conditions. All seedlings grown with apatite as P source had higher foliar P concentrations (0.71–2.11 mg/g) than seedlings growing without any P source (0.57–0.75 mg/g) indicating a significant ability to use apatite as a P source. Seedlings colonized by Suillus variegatus and Paxillus involutus had higher concentrations and total contents of P in shoots compared with non-mycorrhizal seedlings, indicating significant improvement of P uptake by these fungi in comparison with non-mycorrhizal seedlings or seedlings colonized Piloderma croceum.No clear relationship between exudation of organic acids and uptake of P was found. Seedlings colonized by S. variegatus reduced the pH of the soil more than seedlings colonized by P. involutus or non-mycorrhizal seedlings. It is suggested that S. variegatus colonization improves the P uptake by reducing the pH of the soil while P. involutus improves P uptake by having a greater ability to absorb dissolved phosphate than non-mycorrhizal roots or roots colonized by the other fungi used in the study.  相似文献   

9.
Root and mycelial exudation contributes significantly to soil carbon (C) fluxes, and is likely to be altered by an elevated atmospheric carbon dioxide (CO2) concentration and nitrogen (N) deposition. We quantified soluble, low-molecular-weight (LMW) organic compounds exuded by ectomycorrhizal plants grown under ambient (360 p.p.m.) or elevated (710 p.p.m.) CO2 concentrations and with different N sources. Scots pine seedlings, colonized by one of five different ectomycorrhizal or nonmycorrhizal fungi, received 70 μM N, either as NH4Cl or as alanine, in a liquid growth medium. Exudation of LMW organic acids (LMWOAs), dissolved monosaccharides and total dissolved organic carbon were determined. Both N and CO2 had a significant impact on exudation, especially of LMWOAs. Exudation of LMWOAs was negatively affected by inorganic N and decreased by 30–85% compared with the organic N treatment, irrespective of the CO2 treatment. Elevated CO2 had a clear impact on the production of individual LMWOAs, although with very contrasting effects depending on which N source was supplied.  相似文献   

10.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   

11.
在液体培养基中设置无磷、低磷、中磷和高磷四种磷浓度,离体培养松乳菇Lactarius deliciosus的3个株系Ld-01、Ld-02、Ld-03和双色蜡蘑Laccaria bicolor S238N,分别测定外生菌根真菌的生长量、草酸、氢离子和酸性磷酸酶分泌速率。结果表明,在中磷的条件下,外生菌根真菌的生长最好,无磷、低磷或高磷对它们的生长产生抑制作用,抑制程度因菌种(株)不同而异。草酸、氢离子和酸性磷酸酶的分泌速率顺序为:无磷(0g NaH2PO4/L)> 低磷(0.229g NaH2PO4/L)  相似文献   

12.
Patterns and regulation of mycorrhizal plant and fungal diversity   总被引:20,自引:1,他引:19  
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single functional group of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.  相似文献   

13.
The outcome of species interactions often depends on the environmental conditions under which they occur. In this study, we tested how different soil moisture conditions affected the outcome of the ectomycorrhizal symbiosis between three Rhizopogon species and Pinus muricata in a factorial growth chamber experiment. We found that when grown in 7% soil moisture conditions, ectomycorrhizal plants had similar biomass, photosynthesis, conductance, and total leaf nitrogen as non-mycorrhizal plants. However, when grown at 13% soil moisture, ectomycorrhizal plants had significantly greater shoot biomass, higher photosynthetic and conductance rates, and higher total leaf nitrogen than non-mycorrhizal plants. The differences in plant response by mycorrhizal status in the two soil moisture treatments corresponded with evidence of water limitation experienced by the fungi, which had much lower colonization at 7% compared to 13% soil moisture. Our results suggest that the outcome of the ectomycorrhizal symbiosis can be context-dependent and that fluctuating environmental conditions may strongly affect the way plants and fungi interact. Peter G. Kennedy and Kabir G. Peay contributed equally to this work and order was determined by a coin toss.  相似文献   

14.
If arbuscular mycorrhizal fungi (AMF) promote phosphorus partitioning of plant hosts, they could provide one mechanism for the maintenance of plant community diversity. We investigated whether AMF improved the ability of old field perennials to grow on a range of phosphorus sources and whether AMF facilitated differential performance of plant species on different phosphorus sources (phosphorus niche partitioning). We manipulated form of phosphorus (control versus different inorganic and organic sources) and AM fungal species (control versus four individual AMF species or an AMF community) for five old field perennials grown in a greenhouse in individual culture. Based on biomass after four months of growth, we found no evidence for phosphorus niche partitioning. Rather, we found that effects of AMF varied from parasitic to mutualistic depending on plant species, AMF species, and phosphorus source (significant Plant × Fungus × Phosphorus interaction). Our results suggest that the degree of AMF benefit to a plant host depends not only on AMF species, plant species, and soil phosphorus availability (as has also been found in other work), but can also depend on the form of soil phosphorus. Thus, the position of any AMF species along the mutualism to parasitism continuum may be a complex function of local conditions, and this has implications for understanding plant competitive balance in the field.  相似文献   

15.
Phosphorus concentrations in many south-east Asian tropical rain forest soils are very low. To determine the growth responses of seedlings of a light-demanding (Shorea leprosula) and a more shade-tolerant (Hopea nervosa) dipterocarp species to increasing P, we carried out a nursery fertilisation experiment. Responses of symbiotic ectomycorrhizal (EcM) fungi to the treatments were also determined. Seedlings were grown under high light (13 mol m−2 d−1) or moderate light (4 mol m−2 d−1) in shade-chambers and were fertilised with a solution containing 0, 1, 10 or 100 mg L−1 P. The growth of Hopea and Shorea showed different responses to the light and P fertilisation treatments with Hopea having greater growth under moderate light conditions and Shorea having greater growth under high light conditions. Shorea responded to P fertilisation by increasing its foliar P concentrations and growth rates, whereas Hopea did not take up additional P and did not improve its growth rates. There was no effect of either light or P fertilisation on total EcM colonisation or EcM diversity, but around half of the EcM morphotypes observed were affected by one of these two abiotic perturbations, most notably for Riessiella sp. which increased with P fertilisation suggesting it may not be a mutualistic fungus. These results show how niche partitioning in both dipterocarp seedlings and EcM fungi can be divided along contrasting axes.  相似文献   

16.

Background and aims

Phosphorus from phytate, although constituting the main proportion of organic soil P, is unavailable to plants. Despite the well-known effects of rhizosphere trophic relationships on N mineralization, no work has been done yet on P mineralization. We hypothesized that the interactions between phytate-mineralizing bacteria, mycorrhizal fungi and bacterial grazer nematodes are able to improve plant P use from phytate.

Methods

We tested this hypothesis by growing Pinus pinaster seedlings in agar containing phytate as P source. The plants, whether or not ectomycorrhizal with the basidiomycete Hebeloma cylindrosporum, were grown alone or with a phytase-producing bacteria Bacillus subtilis and two bacterial-feeder nematodes, Rhabditis sp. and Acrobeloides sp. The bacteria and the nematodes were isolated from ectomycorrhizal roots and soil from P. pinaster plantations.

Results

Only the grazing of bacteria by nematodes enhanced plant P accumulation. Although plants increased the density of phytase-producing bacteria, these bacteria alone did not improve plant P nutrition. The seedlings, whether ectomycorrhizal or not, displayed a low capacity to use P from phytate.

Conclusions

In this experiment, the bacteria locked up the phosphorus, which was delivered to plant only by bacterial grazers like nematodes. Our results open an alternative route for better utilization of poorly available organic P by plants.  相似文献   

17.
Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.  相似文献   

18.
Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what ‘urban’ factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.  相似文献   

19.
《Mycological Research》2006,110(6):734-748
Wooded meadows are seminatural plant communities that support high diversity of various taxa. Due to changes in land use, wooded meadows have severely declined during the last century. The dominant trees in wooded meadows acquire mineral nutrients via ectomycorrhizal fungi. Using anatomotyping and sequencing of root tips, interpolation and extrapolation methods, we studied the diversity and community structure of ectomycorrhizal fungi in two soil horizons of both managed and forested parts of a wooded meadow in Estonia. Species of Thelephoraceae, Sebacinaceae and the genus Inocybe dominated the whole ectomycorrhizal fungal community of 172 observed species. Forested and managed parts of the wooded meadow harboured different communities of ectomycorrhizal fungi, whereas soil horizon had a negligible effect on the fungal community composition. Diverse soil conditions and host trees likely support the high richness of ectomycorrhizal fungi in the wooded meadow ecosystem. Direct sequencing integrated with interpolation and extrapolation methods are promising to identify the fungi at the species level and to compare species richness between communities of ectomycorrhizal fungi.  相似文献   

20.
Understanding the mechanisms that allow for plant invasions is important for both ecologists and land managers, due to both the environmental and economic impacts of native biodiversity losses. We conducted an observational field study in 2008 to examine the relationship between native and non-native forest understory plant species and to investigate the influence of soil nitrogen (N) on plant community richness and diversity. In 2009, we conducted a companion fertilization experiment to investigate how various forms of N deposition (inorganic and organic) influenced native and non-native species richness and diversity. We found that native species richness and diversity were negatively correlated with 1) non-native species richness and diversity and 2) higher total soil inorganic N. In the deposition experiment, adding organic N fertilizers decreased native richness and diversity compared to inorganic N fertilizers. Together, these results indicate that increasing soil N can be detrimental to native species; however, native species richness and diversity may counteract the N-stimulation of non-native species. Furthermore, the negative effects of organic N deposition on native plants may be just as strong, if not stronger, than the effects of inorganic N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号