首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host+) and the other half were free of host plants (host). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.  相似文献   

2.
Growth responses to and accumulation of mercury by ectomycorrhizal fungi   总被引:1,自引:0,他引:1  
Crane S  Dighton J  Barkay T 《Fungal biology》2010,114(10):873-880
Heavy metals have been shown to negatively affect the growth of ectomycorrhizal fungi (ECMF). In addition, ECMF have been shown to accumulate heavy metals and to protect host trees from metal toxicity. However, specific literature on the interactions between ECMF and mercury (Hg) is scant. This paper describes the responses of ECMF to Hg in axenic culture conditions. Six ECMF from an area with no known history of direct Hg contamination were tested to determine their sensitivity to Hg. ECMF were incubated on solid medium amended with Hg (0–50 μM) as HgCl2 and the effect of Hg on radial growth was determined. The effect of preexposure cultivation on Hg sensitivity, the effect of Hg on biomass production, and the ability to accumulate Hg were determined for four of the ECMF. At micromolar concentrations, Hg significantly inhibited the radial growth rate of ECMF. This inhibitory effect was lessened in some ECMF when an established colony was exposed to Hg. Mercury lowered biomass production by some ECMF, and ECMF accumulate Hg from a solid growth substrate in direct relation to the amount of Hg added to the media. Possible implications for ECMF communities in Hg-impacted areas are discussed.  相似文献   

3.
This study investigated broad patterns in communities of ectomycorrhizal fungi from three Florida habitats (sandhills, scrub, and pine rocklands) and the ability of spore bank fungi to associate with Pinus elliottii (slash pine) and Pinus densa (south Florida slash pine). Efforts to replant pines in the endangered pine rocklands are vital to the persistence of this habitat, yet little is known about the ectomycorrhizal fungi communities or how they may differ from those in other pine-dominated habitats in Florida. We used high-throughput amplicon sequencing (HTS) to assess baseline fungal communities and greenhouse bioassays to bait ectomycorrhizal fungi using seedlings. HTS soil data recovered 188 ectomycorrhizal species but only a few subsequently colonized the bioassay seedlings. We recovered 21 ectomycorrhizal species on pine seedlings including common spore bank fungi such as Cenococcum, Suillus, and Tuber, but Rhizopogon species were dominant across all sites and habitats. Habitat type and site were significant variables influencing the community composition of the total soil fungal community, soil ectomycorrhizal community, and the fungi found on seedling root tips. However, we found no significant differences between the ectomycorrhizal communities on seedling roots from the two Pinus species.  相似文献   

4.
American elm (Ulmus americana) seedlings were either non-inoculated or inoculated with Hebeloma crustuliniforme, Laccaria bicolor and a mixture of the two fungi to study the effects of ectomycorrhizal associations on seedling responses to soil compaction and salinity. The seedlings were grown in the greenhouse in pots containing non-compacted (0.4 g cm?3 bulk density) and compacted (0.6 g cm?3 bulk density) soil and subjected to 60 mM NaCl or 0 mM NaCl (control) treatments for 3 weeks. All three fungal inocula had similar effects on the responses of elm seedlings to soil compaction and salt treatment. In non-compacted soil, ectomycorrhizal fungi reduced plant dry weights, root hydraulic conductance, but did not affect leaf hydraulic conductance and net photosynthesis. When treated with 60 mM NaCl, ectomycorrhizal seedlings had several-fold lower leaf concentrations of Na+ compared with the non-inoculated plants. Soil compaction reduced Na+ leaf concentrations in non-ectomycorrhizal plants and decreased dry weights, gas exchange and root hydraulic conductance. However, in ectomycorrhizal plants, soil compaction had little effect on the leaf Na+ concentrations and on other measured growth and physiological parameters. Our results demonstrated that ECM associations could be highly beneficial to plants growing in sites with compacted soil such as urban areas.  相似文献   

5.
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha−1 y−1 for eight weeks, to achieve a total application of 35 kg ha−1 during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33–83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33–66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.  相似文献   

6.
以湖南省林业科学院龙伏试验基地3年生常规方法培养的马尾松苗Pinus massoniana(以下简称常规苗)和3年生马尾松根生产(root production method,RPM)苗根、根际土为研究对象,采用 Illumina MiSeq 测序技术研究其根系及根际土壤外生菌根真菌(ectomycorrhizal fungi,ECMF)群落结构特征,旨在探明其土壤微生境的差异,进而为人工接种菌根真菌及改良常规苗的土壤微生境奠定基础。测序共获得170 148条ECMF序列,划分为20个OTUs(operational taxonomic units,OTU),隶属于2门、3纲、7目、8科、11属。Chao1丰富度指数、Ace丰富度指数、Simpson多样性指数与Shannon-Wiener多样性指数均表现为常规苗根际土的OTUs丰富度高于RPM苗根际土,并且根样OTUs丰富度低于根际土样(P<0.05)。不同样品的ECMF优势属占比也不同,RPM苗根样中占比最大的为Amphinema(47.89%),常规苗根样为Tomentella(70.60%);RPM苗土样中占比最大的为Tylospora(62.33%),常规苗土样为Tomentella(55.69%)。冗余分析表明,土壤pH值对ECMF的影响程度最大,其次为速效磷和有机质;同时,不同理化因子对群落多样性指数及优势属的影响也存在差异。  相似文献   

7.
Amongst the factors hypothesized to be responsible for high ectomycorrhizal fungal diversity are resource partitioning and niche differentiation. However, functional differences amongst ectomycorrhizal fungi, which are pre-requisites for resource partitioning, are known primarily from lab studies; now realistic field experiments are needed in order to establish that these differences exist under field conditions. In this study, Picea engelmannii seedlings planted in a subalpine clearcut became naturally colonized over the course of 1 y. Then a defined volume of soil around each seedling was injected with 15N-labelled nitrate, ammonium or aspartate. Seedling biomass and N content increased, but N concentration decreased, with percent colonization of root systems. Accumulation of 15N per unit dry weight was not affected by the proportion of roots colonized but, rather, was influenced by the primary ectomycorrhizal fungus colonizing the seedling. Seedlings colonized by a Wilcoxina sp. accumulated more 15N per g than seedlings colonized by a Cenococcum sp. The presence of dark septate hyphae in the mantle was associated with lower accumulation of 15N by seedlings colonized by Amphinema byssoides. Our results demonstrate that the physiological differences required to support the concept of niche differentiation amongst ectomycorrhizal fungi exist in the field.  相似文献   

8.
Baxter JW  Dighton J 《Mycorrhiza》2005,15(7):513-523
We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P.  相似文献   

9.

Key message

Seedlings of three Fagaceae species planted on acidic, infertile colluvial soil showed accelerated growth when inoculated with ectomycorrhizal fungi.

Abstract

We conducted a study with seedlings of Fagaceae species inoculated with ectomycorrhizal fungi to estimate their utility for growth in acidic soil conditions. We selected Quercus glauca, Quercus salicina and Castanopsis cuspidata as typical evergreen, broad-leaved, woody species of southwestern Japan. Seedlings were inoculated with Astraeus hygrometricus or Scleroderma citrinum, and planted in acidic, infertile colluvial soil collected from an abandoned site. Six months after planting, seedlings of the three species inoculated with A. hygrometricus were growing well, especially, Q. salicina. The growth of seedlings inoculated with S. citrinum was inferior to seedlings inoculated with A. hygrometricus. In contrast, seedlings without ectomycorrhizal fungi did not grow well. Differences in growth among the three types of seedlings were related to differences in the levels of nutrient acquisition. We concluded that Fagaceae seedlings inoculated with A. hygrometricus were best suited for acidic, infertile environments.  相似文献   

10.
【背景】西南桦是兼具内生、外生菌根的典型菌根营养型树种,菌根化育苗是其壮苗培育的有效措施。【目的】揭示外生菌根真菌对西南桦无性系幼苗生长和养分含量的影响,为其菌根化育苗筛选优良外生菌根真菌提供科学依据。【方法】以BY1、FB4、FB4+和A5等4个西南桦优良无性系为研究对象,选用土生空团菌(Cenococcumgeophilum)、松乳菇(Lactariusdeliciosus)、黄硬皮马勃(Scleroderma flavidum)、多根硬皮马勃(S. polyrhizum)、褐环乳牛肝菌(Suillus luteus)和红绒盖牛肝菌(Xerocomuschrysenteron)6个外生菌根真菌进行盆栽接种试验,分析接种处理间及无性系间苗高、地径、生物量以及养分含量差异。【结果】6个菌种均能与西南桦无性系幼苗形成外生菌根共生体,接种多根硬皮马勃与黄硬皮马勃显著促进了幼苗生长和养分吸收(P0.05),说明其与幼苗的亲和力明显优于其它菌种。尽管菌根侵染率在4个无性系之间无显著差异(P≥0.05),但各菌种对FB4、BY1幼苗生长的促进作用显著强于其它2个无性系。【结论】多根硬皮马勃和黄硬皮马勃可作为西南桦菌根化育苗的优选菌种。  相似文献   

11.

Aims

In western North America ectomycorrhizal fungi are critical to establishment of conifers in low nitrogen soils. Fire can affect both ectomycorrhizal fungi and soil properties, and inoculation with ectomycorrhizal fungi is recommended when planting on burns for restoration. The aim of this study was to examine how Suillus species used in inoculation affect whitebark pine (Pinus albicaulis L.) seedlings planted in fire-impacted soil.

Methods

In a greenhouse experiment, Suillus-colonized and uncolonized whitebark pine seedlings were planted in unsterilized and sterilized (control) soil from a recent burn. After 6 months, foliar nitrogen and carbon content, concentration, and stable isotope values were assessed, along with growth parameters.

Results

When seedlings were colonized, biomass was 61% greater, foliar nitrogen content 25% higher, foliar nitrogen concentration 30–63% lower; needles had lower δ15N and higher δ13C. Differences were more pronounced in sterilized soil where colonization was higher. Foliar N content was negatively correlated with δ15N values.

Conclusions

Colonization by host-specific fungi produced larger seedlings with higher foliar nitrogen content in both burn soils. The hypothesis that ectomycorrhizal fungi on roots fractionate nitrogen isotopes leading to lower δ15N in needles is supported. This helps explain restoration outcomes, and bridges the gap between field and in vitro investigations.
  相似文献   

12.
《Mycological Research》2006,110(6):734-748
Wooded meadows are seminatural plant communities that support high diversity of various taxa. Due to changes in land use, wooded meadows have severely declined during the last century. The dominant trees in wooded meadows acquire mineral nutrients via ectomycorrhizal fungi. Using anatomotyping and sequencing of root tips, interpolation and extrapolation methods, we studied the diversity and community structure of ectomycorrhizal fungi in two soil horizons of both managed and forested parts of a wooded meadow in Estonia. Species of Thelephoraceae, Sebacinaceae and the genus Inocybe dominated the whole ectomycorrhizal fungal community of 172 observed species. Forested and managed parts of the wooded meadow harboured different communities of ectomycorrhizal fungi, whereas soil horizon had a negligible effect on the fungal community composition. Diverse soil conditions and host trees likely support the high richness of ectomycorrhizal fungi in the wooded meadow ecosystem. Direct sequencing integrated with interpolation and extrapolation methods are promising to identify the fungi at the species level and to compare species richness between communities of ectomycorrhizal fungi.  相似文献   

13.
Plant roots select non‐random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short‐term additions of N, a growth‐limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns.  相似文献   

14.
Effects of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens Melin (MRA) on growth of Betula platyphylla var. japonica seedlings were investigated under aseptic culture conditions. Three isolates of ectomycorrhizal fungi and two isolates of MRA were used. One MRA isolate was Phialocephala fortinii. Previous field work revealed that these isolates were dominant on the roots of B. platyphylla var. japonica seedlings grown in a mineral subsoil that had been exposed by the removal of surface soil. After a 100-day incubation, the growth of the seedlings was significantly enhanced by the colonization of these ectomycorrhizal fungal isolates as compared with uninoculated seedlings. In contrast, the growth of seedlings was retarded by the colonization of the MRA isolates. The growth of seedlings that were co-inoculated with ectomycorrhizal fungi and MRA was similar to that of uninoculated seedlings in most cases. These results suggest that ectomycorrhizal fungi have a beneficial effect on the growth of B. platyphylla var. japonica seedlings and that they suppress the deleterious effect of MRA. Thus, these ectomycorrhizal fungi probably have an important role in establishing B. platyphylla var. japonica seedlings during the initial stage of re-vegetation following site disturbance by the removal of surface soil.  相似文献   

15.
This study presents a new technique to measure root elongation of Japanese red pine (Pinus densiflora Seibold & Zucc.) seedlings with very high sensitivity in the order of sub-nanometer by using a novel optical interference method called statistical interferometry. The principle of the statistical interferometry is based on the statistics of a speckle field, which is generated when a rough surface is illuminated by a laser light. The technique facilitates to obtain minute root elongation measurements in the order of sub-seconds. The root elongation behavior of Pinus densiflora seedlings infected with ectomycorrhizal fungi, Pisolithus sp. (Ps) and Cenococcum geophilum Fr. (Cg), was investigated in comparison with that of an uninfected control. In the experiments, two points on a root with the separation of 3 mm were illuminated by laser beams and the elongation was measured continuously by analyzing speckle patterns successively taken by a CCD camera. The root elongation rate (RER), measured as the length of root elongation per second per millimeter (mean ± S.D.) for Ps-infected, Cg-infected and uninfected seedlings were 10.85 ± 2.41, 5.54 ± 1.43, and 2.41 ± 1.01 nm s−1 mm−1, respectively. We found that the RERs of seedlings infected with ectomycorrhizal fungi were significantly higher than that of the uninfected seedlings, and the seedlings infected with Ps fungi showed the highest RER. We conducted another experiment to observe two-dimensional root growth, in which the growth measurements were obtained for 4 months. From this experiment, we observed that root growth of ectomycorrhizal fungi infected seedlings were higher than that of the uninfected seedlings. The evaluation of results from these two techniques proves that the proposed statistical interferometry is much faster and very sensitive technique, where the time required for growth monitoring is 107 times less than the other. We can conclude that, at the scale of either very short time or relatively long time, the symbiotic relationship between root and ectomycorrhiza has a positive effect steadily on the root elongation.  相似文献   

16.
This study presents a new technique to measure root elongation of Japanese red pine (Pinus densiflora Seibold & Zucc.) seedlings with very high sensitivity in the order of sub-nanometer by using a novel optical interference method called statistical interferometry. The principle of the statistical interferometry is based on the statistics of a speckle field, which is generated when a rough surface is illuminated by a laser light. The technique facilitates to obtain minute root elongation measurements in the order of sub-seconds. The root elongation behavior of Pinus densiflora seedlings infected with ectomycorrhizal fungi, Pisolithus sp. (Ps) and Cenococcum geophilum Fr. (Cg), was investigated in comparison with that of an uninfected control. In the experiments, two points on a root with the separation of 3 mm were illuminated by laser beams and the elongation was measured continuously by analyzing speckle patterns successively taken by a CCD camera. The root elongation rate (RER), measured as the length of root elongation per second per millimeter (mean ± S.D.) for Ps-infected, Cg-infected and uninfected seedlings were 10.85 ± 2.41, 5.54 ± 1.43, and 2.41 ± 1.01 nm s?1 mm?1, respectively. We found that the RERs of seedlings infected with ectomycorrhizal fungi were significantly higher than that of the uninfected seedlings, and the seedlings infected with Ps fungi showed the highest RER. We conducted another experiment to observe two-dimensional root growth, in which the growth measurements were obtained for 4 months. From this experiment, we observed that root growth of ectomycorrhizal fungi infected seedlings were higher than that of the uninfected seedlings. The evaluation of results from these two techniques proves that the proposed statistical interferometry is much faster and very sensitive technique, where the time required for growth monitoring is 107 times less than the other. We can conclude that, at the scale of either very short time or relatively long time, the symbiotic relationship between root and ectomycorrhiza has a positive effect steadily on the root elongation.  相似文献   

17.
Spores and sclerotia are the main propagules that allow fungi to persist through unfavorable conditions and disperse into new environments. Despite their importance, very little is known about their longevity and dormancy, especially in ectomycorrhizal fungi. To assess the viability of ectomycorrhizal fungal spores in forest soil, we collected and buried non-sterile forest soil, in pots, in the field distant from an inoculum source. After 6 yr, a subset of this soil was assayed for viable spores by baiting the fungi with Bishop pine (Pinus muricata) seedlings. Our results show that the three most frequent colonizers in year 1 continued to colonize significant percentages of seedlings in year 6: Wilcoxina mikolae (77 %), Rhizopogon vulgaris (13 %) and Suillus brevipes (9 %). While three species that colonized low percentages of seedlings in year 1, Suillus pungens (1 %), Rhizopogon salebrosus (2 %), and Thelephora terrestris (5 %) were not recovered in year 6. Laccaria proxima, a species not seen in year 1, was recovered on a single seedling in year 6. This is the first report of long-term survival of S. brevipes and W. mikolae. Our results reveal a more complete picture of ectomycorrhizal fungal spore longevity in soil spore banks.  相似文献   

18.
Ergosterol contents of six wood-rotting basidiomycetes were analyzed under different cultivation conditions. Four white-rot and two brown-rot fungi were cultivated in liquid synthetic medium with low nutrient nitrogen (2 mM) and 0.1% glucose, and ergosterol in mycelial biomasses were measured weekly for 35 days. The highest ergosterol content per fungal dry mass in the white-rot fungi was found in Phanerochaete chrysosporium being 2100 μg g−1, while in Ceriporiopsis subvermispora it was 1700 μg g−1, Phlebia radiata 700 μg g−1, and Physisporinus rivulosus 560 μg g−1. In brown-rot fungi the ergosterol content was in Poria placenta 2868 μg g−1 and in Gloeophyllum trabeum 3915 μg g−1. On agar media, P. chrysosporium and P. radiata reached the highest ergosterol value in 7 days, while in wood block cultures the ergosterol contents were quite stable. The conversion factors for ergosterol-to-fungal biomass varied from 48 and 243, which were lower than values for ascomycetous soil fungi reported in the literature.  相似文献   

19.
Forty species of fungi, representing a range of ecological and taxonomic groups, were tested for their ability to grow on agar media amended with lithium chloride (LiCl) at 1.5, 3 and 6 g l−1. Species of Trichoderma varied considerably in their sensitivity to LiCl; at one week on 6 g l−1 LiCl medium, the growth of seven species of Trichoderma was considerably inhibited; however, by three weeks at this level, four of the species tested were able to attain ≥30 % of control growth. Of the seven species tested, an isolate of T. viride was the most sensitive to LiCl in agar. Eleven other imperfect fungi also showed a range of ability to grow on agar amended with LiCl, from total inhibition to complete lack of inhibition. Six ascomycete fungi were greatly inhibited by LiCl at all levels; however, an isolate of Chaetomium globosum was highly tolerant of LiCl. Seven basidiomycete wood-decay fungi were quite sensitive to LiCl in agar, showing total to nearly total inhibition even at the lowest level; however, after three weeks, an isolate of Postia placenta was nearly uninhibited except at 6 g l−1. Five ectomycorrhizal basidiomycete fungi were totally inhibited by all levels of LiCl; however, one ectomycorrhizal imperfect fungus (Cenococcum graniforme) was able to grow at 3 g l−1 and was uninhibited at 1.5 g l−1. Four zygomycete fungus isolates were nearly unaffected in their growth by all levels of LiCl.  相似文献   

20.
Growth responses of Avicennia marina seedlings to contamination by different concentrations of two essential (Cu, Zn) and two non-essential (Pb, Hg) trace metals were studied under glasshouse conditions. We tested the hypothesis that soil retention and root ultrafiltration would exclude most of the trace metals, and that those that are absorbed and translocated to the shoots would interfere with plant performance and be excreted via leaf salt glands. One-month-old seedlings were subjected to Cu, Zn, Pb and Hg at concentrations of 0, 40, 80, 120 and 160 μg g−1 sediment for 12 months in a randomized complete block design (n = 6). Photosynthesis was measured at the end of 12 months of trace metal exposure with a portable gas exchange system and chlorophyll fluorescence with a pulse-modulated fluorometer. After morphometric measurements, plants were harvested and analyzed for Cu, Zn, Pb and Hg by atomic absorption spectroscopy. Total dry biomass decreased with increasing trace metal concentration for all metals. In the 160 μg g−1 Cu, Zn, Hg and Pb treatments, total biomass was significantly lower than the control value by 43%, 37%, 42% and 40%, respectively. Decreases in plant height and number of leaves followed trends similar to those for total biomass and ranged from 37% to 60%, compared to the controls. Decreases in chlorophyll content in the trace metal treatments ranged from 50% to 58% compared to the control. Carbon dioxide exchange, quantum yield of photosystem II (PSII), electron transport rate (ETR) through PSII and photosynthetic efficiency of PSII (Fv/Fm) were highest in the control treatment and decreased with increasing trace metal concentrations. Decreases in CO2 exchange in the 160 μg g−1 treatments for all trace metals ranged from 50% to 60%. Concentrations of all trace metals in plant organs increased with increasing metal concentrations and were higher in roots than in shoots, with concentrations of Cu and Zn being considerably higher than those of Hg and Pb. Qualitative elemental analyses and X-ray mapping of crystalline deposits over the glands at the leaf surfaces indicated that Cu and Zn were excreted from the salt glands, while Hg and Pb were absent, at least being below the limits of detection. These results demonstrate that growth processes are sensitive to trace metals and therefore can be considered as a cost of metal tolerance, but salt glands of this mangrove species do contribute eliminating at least part of physiologically essential trace metals if taken up in excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号