首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The nucleotide sequence of 1200 bp from the unique region of transposon Tn5 containing the neomycin phosphotransferase gene (neo) was determined, and the location of the neo gene was identified by deletion mutants in a translational reading frame of 792 bp. The derived gene product, an aminoglycoside 3′-phosphotransferase (APH) II, consists of 264 amino acid residues and has a calculated Mr of 29053. Its amino acid sequence shows sequence homologies to the APH type I enzyme coded for by transposon Tn903 (Oka et al., 1981).  相似文献   

2.
Abstract Four plasmids were constructed by associating Escherichia coli and yeast selection markers and replication origins to a structural gene coding for aminoglycoside phosphotransferase (APH(3')) controlled by different flanking sequences. We used the two bacterial genes of Tn5 (APH(3')II) and Tn903 (APH(3')I) as such and the chimeric pSVneo (APH(3')II) and pNOSneo (APH(3')II) constructs, functional in mammalian and plant cells, respectively. Yeast clones resistant to G418 were obtained with all plasmids except with that bearing the bacterial APH(3')II gene. The three plasmids harbouring the functional APH genes, however, conferred different levels of G418 resistance to yeast.  相似文献   

3.
Tn1525, a kanamycin R determinant flanked by two direct copies of IS15   总被引:6,自引:0,他引:6  
We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3') (5") type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant. Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.  相似文献   

4.
A plasmid carrying a weakly expressed neomycin phosphotransferase (neo) gene from the transposable element Tn5 was found to confer elevated levels of antibiotic resistance on its host cell when it existed in a non-monomeric state. This activation of the neo gene appeared to be a generalized effect which can be exerted on any plasmid-encoded gene, since specific sequences were not required for enhanced neo expression, and the activity of a plasmid-borne chloramphenicol acetyltransferase gene could be similarly induced by oligomerization. The potential role that multiple origins of replication present in such oligomeric plasmids play in these observed increases in gene expression is discussed.  相似文献   

5.
6.
The central region of transposon Tn5 carries three antibiotic resistance markers: neo, ble, and str. The str gene codes for a phosphotransferase that inactivates streptomycin. This activity is phenotypically expressed in several gram-negative bacteria but not in Escherichia coli. We identified a Tn5 variant in E. coli clinical isolates that express streptomycin resistance. This transposon carries a 6-base-pair deletion within the str gene, near the 3' end. The same kind of mutation had been previously obtained experimentally from Tn5.  相似文献   

7.
8.
9.
A major factor in the emergence of antibiotic resistance is the existence of enzymes that chemically modify common antibiotics. The genes for these enzymes are commonly carried on mobile genetic elements, facilitating their spread. One such class of enzymes is the aminoglycoside phosphotransferase (APH) family, which uses ATP-mediated phosphate transfer to chemically modify and inactivate aminoglycoside antibiotics such as streptomycin and kanamycin. As part of a program to define the molecular basis for aminoglycoside recognition and inactivation by such enzymes, we have determined the high resolution (2.1A) crystal structure of aminoglycoside-3'-phosphotransferase-IIa (APH(3')-IIa) in complex with kanamycin. The structure was solved by molecular replacement using multiple models derived from the related aminoglycoside-3'-phosphotransferase-III enzyme (APH(3')-III), and refined to an R factor of 0.206 (R(free) 0.238). The bound kanamycin molecule is very well defined and occupies a highly negatively charged cleft formed by the C-terminal domain of the enzyme. Adjacent to this is the binding site for ATP, which can be modeled on the basis of nucleotide complexes of APH(3')-III; only one change is apparent with a loop, residues 28-34, in a position where it could fold over an incoming nucleotide. The three rings of the kanamycin occupy distinct sub-pockets in which a highly acidic loop, residues 151-166, and the C-terminal residues 260-264 play important parts in recognition. The A ring, the site of phosphoryl transfer, is adjacent to the catalytic base Asp190. These results give new information on the basis of aminoglycoside recognition, and on the relationship between this phosphotransferase family and the protein kinases.  相似文献   

10.
In order to elucidate the structural features of the transposon Tn9', representative of the Tn9 family, which define the ability of the transposon to produce unstable cointegrates, we have obtained a derivative of this transposon carrying a deletion in its central region. The deletion in the obtained transposon delta Tn9' covers a DNA segment of about 50 bp in length, occupying the most distal position in relation to the cat gene, at its junction with the right copy of the IS1. The structure and stability of the IS1/delta Tn9'-mediated cointegrates between the plasmids pDK57.1 (pBR322::delta Tn9') and pRP3.1, a deletion derivative of RP1, have been studied. The three types of cointegrates were found. Those of the type I are predominantly formed, due to the left copy of the IS1 which in delta Tn9' occupies proximal position to the promoter of the cat gene. These cointegrates contain three copies of IS1 and are of high stability. The cointegrates of the type II contain two entire copies of delta Tn9' (i.e. four copies of IS1) as well as the structures of the type II, representing the cointegrate equivalent of inverse transposition and also containing four copies of IS1. Cointegrates of the type II and III dissociate efficiently in the rec+ cells but, in contrast to the cointegrates mediated by the original transposon Tn9', are unable to dissociate efficiently in the recA- cells. It was concluded that a DNA segment in the central region of Tn9' may be essential for the expression of the IS1-specific resolvase encoded by the right copy of IS1.  相似文献   

11.
P N Garrison  M Koob  L D Barnes 《Gene》1992,111(1):131-134
LacI-mediated Achilles' cleavage (AC) is a method for selective fragmentation of chromosomes at special lac operator sites introduced by gene targeting methods [Koob and Szybalski, Science 250 (1990) 271-273]. The Saccharomyces cerevisiae APA1 gene, coding for diadenosine 5', 5"'-P1, P4-tetraphosphate phosphorylase I, has previously been shown to be located on chromosome III [Kaushal et al., Gene 95 (1990) 79-84]. We have now used the AC method to map APA1 gene to a site 44 kb from the left terminus of the chromosome, between the HIS4 and HML genes. This location was confirmed by the comparison of restriction maps of the APA1 gene region to published restriction maps of chromosome III.  相似文献   

12.
The apparently chromosomally encoded 3',5"-aminoglycoside phosphotransferase (type III), from the high-level aminoglycoside-resistant Streptococcus pneumoniae BM4200, was compared with homologous enzymes coded for by the plasmids pJH1 and pSH2, originally isolated from Streptococcus faecalis and Staphylococcus aureus, respectively, and also found in a wild strain of S. aureus, BM4600. The enzymes appeared to be indistinguishable, and we conclude that the gene encoding 3',5"-aminoglycoside phosphotransferase (type III) can cross generic barriers within gram-positive cocci.  相似文献   

13.
pACM1 is a conjugative multiresistance plasmid from Klebsiella oxytoca that encodes SHV-5 extended-spectrum beta-lactamase (ESBL) and has two integrons. The first is a type I (sul type); the second, detected by hybridization with an intI gene probe, has been putatively identified as a defective type I integron. The cassette region of the first integron has now been fully sequenced and contains three aminoglycoside resistance determinants (aac(6')-Ib, aac(3)-Ia, and ant(3")-Ia) and two open reading frames of unknown function. In addition, sequencing of a region downstream from the qacEDelta1-sulI-ORF 5 gene cluster of the first integron revealed a copy of insertion sequence IS6100 flanked by inverted copies of sequence from the 11.2-kb insert (In2) of Tn21. This arrangement is similar to that found in In4 of Tn1696. The coincidence of an ESBL gene and mobile elements on a conjugative plasmid has potential implications for the spread of ESBL-mediated drug resistance, though evidence of bla((SHV-5)) movement mediated by these elements has not been found.  相似文献   

14.
M Rella  A Mercenier  D Haas 《Gene》1985,33(3):293-303
For insertional mutagenesis of Pseudomonas aeruginosa, a derivative of the kanamycin-resistance (KmR) transposon Tn5 was constructed (Tn5-751) that carried the trimethoprim-resistance (TpR) determinant from plasmid R751 as an additional marker. Double selection for KmR and TpR avoided the isolation of spontaneous aminoglycoside-resistant mutants which occur at high frequencies in P. aeruginosa. As a delivery system for the recombinant transposon, plasmid pME305, a derivative of the broad-host-range plasma RP1, proved effective; pME305 is temperature-sensitive at 43 degrees C for maintenance in Escherichia coli and P. aeruginosa and deleted for IS21 and the KmR and primase genes. In matings with an E. coli donor carrying pME9(= pME305::Tn5-751), transposon insertion mutants of P. aeruginosa PAO were recovered at approx. 5 X 10(-7)/donor at 43 degrees C. Among Tn5-751 insertional mutants 0.9% were auxotrophs. A thr::Tn5-751 mutation near the recA-like locus rec-102 is useful for the construction of recombination-deficient strains. Several arc::Tn5-751 mutants could be isolated that were defective in anaerobic utilization of arginine as an energy source. From three of these mutants the arc gene region was cloned into an E. coli vector plasmid. Since Tn5-751 has a single EcoRI site between the TpR and KmR genes, EcoRI-generated fragments carrying either resistance determinant plus adjacent chromosomal DNA could be selected separately in E. coli. Thus, a restriction map of the arc region was constructed and verified by hybridization experiments. The arc genes were tightly clustered, confirming earlier genetic evidence.  相似文献   

15.
16.
The gene encoding rat cystatin S (Cys S), a salivary gland-specific secretory protein, has CAAT and TATA boxes upstream of the inititation codon (Cox and Shaw, 1992), and contains regions that resemble those of other hormonally responsive eukaryotic genes. The 5'-flanking sequence of the rat Cys S gene has a potential CREB/AP-1 binding site (Rupp et al., 1990; Trejo et al., 1992), two potential glucocorticoid responsive elements (GREs, Drouin et al., 1989), and a possible GR/PR (glucocorticoid/progesterone) responsive element (Forman and Samuels, 1990). One of these potential GREs is adjacent to a potential AP-2 binding site, and another is typical of the glucocorticoid and progesterone receptor binding site. In this report, we have identified three regions in the 5'-flanking region of the Cys S gene that are found in salivary gland-specific genes (Ting et al., 1992) with a GT-rich region located between conserved elements II and III. Transfection experiments described in this paper suggest that a 281-bp DNA fragment from the Cys S gene promoter region with conserved elements II and III, the GT-rich region, and a possible GR/PR responsive element contains a negative regulatory element. In addition, our experiments suggest that the GT-rich region by itself is acting as a positive regulatory element.  相似文献   

17.
Shuttle vectors expressing resistance to hygromycin B in bothE. coli and in mammalian cells were constructed. A combination of the simian virus 40 early promoter upstream of the native bacterial promoter of theneo gene from transposon Tn5 was found to express hygromycin B resistance better in both types of host cells than a combination of the Tn5 promoter followed by the promoter of the Herpes simplex virus thymidine kinase gene. Hygromycin phosphotransferase fusion proteins with extensions at the carboxyterminus were also tested and found to be marginally less effective as selection markers in eukaryotic cells but virtually inactive inE. coli.Abbreviations HM hygromycin - hpt hygromycin phosphotransferase gene - neo neomycin (geneticin) phosphotransferase gene - DHFR dihydrofolate reductase  相似文献   

18.
We have designed a new method for the recovery of T-DNA flanking sequences from T-DNA-tagged lines ofArabidopsis thaliana. Since most transformation vectors in use contain a plant-selectable marker for kanamycin resistance, we can use the 3′ part of thenptII coding region from the T-DNA to complement the bacterial 5′ region of thenptII gene from Tn5 to reconstruct a functional kanamycin-resistance gene inEscherichia coli. We have constructed a vector that contains the 5′ part of thenptII gene from Tn5 up to the uniquePst I site. By cloning total DNA from transformed lines in this vector, we were able to select directly for clones containing a T-DNA fragment, which reconstitutes a functional kanamycin gene, and a fragment of arabidopsis genomic DNA adjacent to the insertion. Flanking sequences up to 4 kb were rescued by this system.  相似文献   

19.
Summary The neo genes of Tn5 and Tn903 (Tn601) coding for amigoglycoside phosphotransferase type II and type I, respectively, were joined to the yeast adc 1 promoter and trp1 terminator and introduced into yeast (Saccharomyces cerevisiae) cells. Transformants were obtained by direct selection for G418 resistance. Plasmids containing the Tn5 neo gene induced antibiotic resistance only at low frequency, whereas colonies transformed with the Tn903 neo gene could be selected at high frequency (300–400 transformants/g plasmid DNA). The resistance threshold of transformed strains was increased to 30 mg G418/ml by both genes and high level expression of the bacterial genes in yeast could be shown using an in vitro phosphotransferase assay. The results indicate that this system can be used for high frequency transformation of wild-type strains and might in addition be used for the identification and isolation of promoter-active sequences.Abbreviations adc 1 alcoholdehydrogenase I gene - APH aminoglycoside-3-phosphotransferase - leu2 -isopropylmalate dehydrogenase gene - neo aminoglycoside-3-phosphotransferase gene - trp1 N-(5-phosphoribosyl)-anthranilate isomerase gene Dedicated to Prof. Dr. Dr. h. c. Karl Esser on the occasion of his 65th birthday  相似文献   

20.
Regenerating gene (Reg), first isolated from a regenerating islet cDNA library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells that ameliorates the diabetes of 90% depancreatized rats and non-obese diabetic mice. Reg and Reg-related genes have been revealed to constitute a multigene family, the Reg family, which consists of four subtypes (types I, II, III, IV) based on the primary structures of the encoded proteins of the genes [Diabetes 51(Suppl. 3) (2002) S462]. Plural type III Reg genes were found in mouse and rat. On the other hand, only one type III REG gene, HIP/PAP (gene expressed in hepatocellular carcinoma-intestine-pancreas/gene encoding pancreatitis-associated protein), was found in human. In the present study, we found a novel human type III REG gene, REG III. This gene is divided into six exons spanning about 3 kilobase pairs (kb), and encodes a 175 amino acid (aa) protein with 85% homology with HIP/PAP. REG III was expressed predominantly in pancreas and testis, but not in small intestine, whereas HIP/PAP was expressed strongly in pancreas and small intestine. IL-6 responsive elements existed in the 5'-upstream region of the human REG III gene indicating that the human REG III gene might be induced during acute pancreatitis. All the human REG family genes identified so far (REG Ialpha, REG Ibeta, HIP/PAP, REG III and REG IV) have a common gene structure with 6 exons and 5 introns, and encode homologous 158-175-aa secretory proteins. By database searching and PCR analysis using a yeast artificial chromosome clone, the human REG family genes on chromosome 2, except for REG IV on chromosome 1, were mapped to a contiguous 140 kb region of the human chromosome 2p12. The gene order from centromere to telomere was 5' HIP/PAP 3'-5' RS 3'-3' REG Ialpha 5'-5' REG Ibeta 3'-3' REG III 5'. These results suggest that the human REG gene family is constituted from an ancestor gene by gene duplication and forms a gene cluster on the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号