首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins mediating intercellular recognition face opposing selective forces as they evolve: purifying selection to maintain function, and diversifying selection to alter specificity. Lysin is a 16-kDa protein which enables sperm of free-spawning marine snails to make a hole in the vitelline layer (VE) surrounding conspecific eggs. Previous work on abalone (Haliotis spp.) has shown that positive selection promotes rapid interspecific divergence of lysin. Here, we present data on the specificity of VE dissolution by four species of teguline gastropods, along with lysin cDNA sequences. The teguline and abalone lineages diverged over 250 MYA. As in abalone, VE dissolution by lysin in tegulines is species-selective, and positive selection promotes rapid interspecific divergence over the entire mature protein. Nonsynonymous substitution rates, calculated using a mtCOI molecular clock calibrated by two Tegula species separated by the Isthmus of Panama, are high (> 25 substitutions per site per 10(9) years). However, the extensive replacements in teguline lysins are overwhelmingly conservative with respect to type, charge, and polarity of residues. Predictions of secondary structure suggest that the size and position of alpha-helices are also conserved, even through pairwise amino acid identities between Haliotis rufescens and the different tegulines are less than 15%.  相似文献   

2.
While gene duplication is a major source of evolutionary novelty, the importance of this process in reproductive protein evolution has not been widely investigated. Here, we report the first known case of gene duplication of abalone sperm lysin in an allopatric subspecies found in the Eastern Atlantic, Haliotis tuberculata coccinea. Mass spectrometry identified both copies of the lysin protein in testis tissue, and 3-dimensional structural modeling suggests that both proteins remain functional. We also detected positive selection acting on both paralogs after duplication and found evidence of a recent selective sweep. Because H. t. coccinea occurs in geographic isolation from other abalone species, these findings suggest that the evolution of lysin is not driven to create reproductive barriers to unfit hybrid formation with an overlapping species. Instead, sexual selection or sexual conflict acting during abalone fertilization could be responsible for the recent positive selection on this protein. The presence of multiple, rapidly evolving lysin genes in H. tuberculata presents an opportunity to study the early stages of diversification of a protein whose function is well understood.  相似文献   

3.
Abalone sperm lysin is a nonenzymatic, 16-kDa protein that creates a hole in the egg vitelline envelope (VE) through which the sperm swims to fuse with the egg. The dissolution of isolated VE by lysin is species specific. Interspecies comparisons show that the most divergent region of lysin is the N-terminal segment of residues 1-12 which is always species-unique. The C-terminus and three internal segments are moderately variable between species, but not species unique. Analysis of nucleotide substitutions shows that lysin evolves rapidly by positive Darwinian selection, suggesting that there is adaptive value in altering its amino acid sequence. The results reported here, in which segments of lysin were exchanged between two species, prove by direct experimentation that the interspecies variable termini play major roles in the species-specific recognition between sperm lysin and the egg VE.  相似文献   

4.
The evolution of species-specific fertilization in free-spawning marine invertebrates is important for reproductive isolation and may contribute to speciation. The biochemistry and evolution of proteins mediating species-specific fertilization have been extensively studied in the abalone (genus Haliotis). The nonenzymatic sperm protein lysin creates a hole in the egg vitelline envelope by species-specifically binding to its egg receptor, VERL. The divergence of lysin is promoted by positive Darwinian selection. In contrast, the evolution of VERL does not depart from neutrality. Here, we cloned a novel nonrepetitive region of VERL and performed an intraspecific polymorphism survey for red (Haliotis rufescens) and pink (Haliotis corrugata) abalones to explore the evolutionary forces affecting VERL. Six statistical tests showed that the evolution of VERL did not depart from neutrality. Interestingly, there was a subdivision in the VERL sequences in the pink abalone and a lack of heterozygous individuals between groups, suggesting that the evolution of assortative mating may be in progress. These results are consistent with a model which posits that egg VERL is neutrally evolving, perhaps due to its repetitive structure, while sperm lysin is subjected to positive Darwinian selection to maintain efficient interaction of the two proteins during sperm competition.  相似文献   

5.
Galindo BE  Moy GW  Swanson WJ  Vacquier VD 《Gene》2002,288(1-2):111-117
Abalone sperm use 16 kDa lysin to create a hole in the egg vitelline envelope (VE) by a species-specific, nonenzymatic mechanism. To create the hole, lysin binds tightly to VERL (the VE receptor for lysin), a giant, unbranched glycoprotein comprising 30% of the VE. Binding of lysin to VERL causes the VERL molecules to lose cohesion and splay apart creating the hole. Lysin and VERL represent a cognate pair of gamete recognition proteins, one male the other female, which mediate fertilization. The coevolution of such cognate pairs may underlie the establishment of species-specific fertilization which could be a component of the mechanism to achieve reproductive isolation and hence new species. Here we present the full-length cDNA sequence (11,166 bp) of VERL from the red abalone (Haliotis rufescens). There are 42 amino acids from the start Met residue to the beginning of the first 'VERL repeat'. Most of VERL (9981 bp; 89.4%) consists of 22 tandem repeats of a approximately 153 amino acid sequence that is predicted to be beta-sheet. The last VERL repeat is followed by 353 non-repeat amino acid residues containing a furin cleavage site (RTRR), a ZP domain and a hydrophobic COOH-terminus with a 3' UTR of only 10 nucleotides. VERL repeats 3-22 have been subjected to concerted evolution and consequently have almost identical sequences. Curiously, comparisons of repeats from other species shows that repeats 1 and 2 of red abalone VERL have not been subjected to concerted evolution since the divergence of the red species from the other six California species.  相似文献   

6.
Kresge N  Vacquier VD  Stout CD 《Biochemistry》2001,40(18):5407-5413
Sp18 is an 18 kDa protein that is released from abalone sperm during the acrosome reaction. It coats the acrosomal process where it is thought to mediate fusion between sperm and egg cell membranes. Sp18 is evolutionarily related to lysin, a 16 kDa abalone sperm protein that dissolves the vitelline envelope surrounding the egg. The two proteins were generated by gene duplication followed by rapid divergence by positive selection. Here, we present the crystal structure of green abalone sp18 resolved to 1.86 A. Sp18 is composed of a bundle of five alpha-helices with surface clusters of basic and hydrophobic residues, giving it a large dipole moment and making it extremely amphipathic. The large clusters of hydrophobic surface residues and domains of high positive electrostatic surface charge explain sp18's ability as a potent fusagen of liposomes. The overall fold of sp18 is similar to that of green abalone lysin; however, the surface features of the proteins are quite different, accounting for their different roles in fertilization. This is the first crystal structure of a protein implicated in sperm-egg fusion during animal fertilization.  相似文献   

7.
Research on speciation of marine organisms has lagged behind that of terrestrial ones, but the study of the evolution of molecules involved in the adhesion of gametes in free-spawning invertebrates is an exception. Here I review the function, species-specificity, and molecular variation of loci coding for bindin in sea urchins, lysin in abalone and their egg receptors, in an effort to assess the degree to which they contribute to the emergence of reproductive isolation during the speciation process. Bindin is a protein that mediates binding of the sperm to the vitelline envelope (VE) of the egg and the fusion of the gametes' membranes, whereas lysin is a protein involved only in binding to the VE. Both of these molecules are important in species recognition by the gametes, but they rarely constitute absolute blocks to interspecific hybridization. Intraspecific polymorphism is high in bindin, but low in lysin. Polymorphism in bindin is maintained by frequency-dependent selection due to sexual conflict arising from the danger of polyspermy under high densities of sperm. Monomorphism in lysin is the result of purifying selection arising from the need for species recognition. Interspecific divergence in lysin is due to strong positive selection, and the same is true for bindin of four out of seven genera of sea urchins studied to date. The differences between the sea urchin genera in the strength of selection can only partially be explained by the hypothesis of reinforcement. The egg receptor for lysin (VERL) is a glycoprotein with 22 repeats, 20 of which have evolved neutrally and homogenized by concerted evolution, whereas the first two repeats are under positive selection. Selection on lysin has been generated by the need to track changes in VERL, permitted by the redundant structure of this molecule. Both lysin and bindin are important in reproductive isolation, probably had a role in speciation, but it is hard to determine whether they meet the strictest criteria of "speciation loci," defined as genes whose differentiation has caused speciation.  相似文献   

8.
鲍配子识别蛋白的研究   总被引:4,自引:0,他引:4  
配子相互作用的生化机制对于进一步阐明生殖过程具有重要作用,它是深入了解细胞内识别的理想体系。精卵细胞相互作用包括一系列的步骤,开始于精子与卵细胞外被的接触,终止于两性细胞的融合及精子核进入卵细胞质中,而精卵细胞的识别具有建立于各自性细胞表面成分基础上的种的特异性,鲍则是研究精卵识别的好材料。鲍精子在发生顶体反应时释放出两种蛋白质——细胞溶素(1ysin)和18ku糖蛋白(spl8),其中的细胞溶素与其卵黄膜上的受体紧密结合,并利用非酶反应在卵黄膜上穿一个小孔,整个精子则从此孔穿过卵黄膜与卵细胞融合;spl8释放后则覆盖到精子细胞膜表面,起到溶解卵细胞脂质体的作用,即spl8介导精、卵细胞膜的融合。鲍卵细胞膜上存在细胞溶素受体,它是大的不分支的糖蛋白分子,占据了卵黄膜30%的组分,可以专一性地与细胞溶素相结合。这些配子识别蛋白共同进化且速度很快,其中细胞溶素和18ku糖蛋白通过正向选择进化,而细胞溶素受体进行协同进化。  相似文献   

9.
Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female–male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.  相似文献   

10.
Abalone sperm lysin is a 16 kDa protein that creates a hole in the egg vitelline envelope (VE) to allow the sperm to fuse with the egg. Purified lysin exhibits quantitative species-specificity in the dissolution of isolated VE. The molecular basis for this specificity has been studied by sequencing lysin cDNA and by solving the lysin crystal structure. In the deduced amino acid sequences of lysins of seven species of California abalones 50% of the positions are invariant. The most highly variable and strictly species-specific region is the amino-terminal domain of residues 2-12. The crystal structure of lysin reveals a highly α-helical protein with a novel fold. Two tracks of basic amino acids run the length of the molecule. A hydrophobic patch of 11 residues lies on the opposite surface from the basic tracks. The species-specific domain of positions 2-12 extends away from the helical core. Mapping the species-variable positions onto the lysin structure indicates regions which could be involved in species-specific molecular recognition.  相似文献   

11.
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of interspecific and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and nonsynonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, show that positive selection on sperm proteins can occur even when postzygotic reproductive isolation is incomplete.  相似文献   

12.
Abalone lysin: the dissolving and evolving sperm protein   总被引:10,自引:0,他引:10  
Abalone sperm lysin is a non-enzymatic protein that creates a hole for sperm passage in the envelope surrounding the egg. Lysin exhibits species-specificity in making the hole and it evolves rapidly by positive selection. Our studies have focused on combining structural, biochemical, and evolutionary data to understand the mechanism of action and evolution of this remarkable protein. Currently, more is known about lysin than about any other protein involved in animal fertilization. We present an hypothesis to explain lysin's rapid evolution and the evolution of species-specific fertilization in this order of mollusks. We also propose a two-step model for lysin's action in which a dimer of lysin binds species-specifically to its glycoprotein receptor, and then monomerizes and binds the receptor in a non-species-specific manner. This experimental system yields data relevant to the general problem of molecular recognition between cell surfaces, and is also important to our thinking about how new species arise in the sea. BioEssays 23:95-103, 2001.  相似文献   

13.
Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26‐AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male‐specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females.Mol. Reprod. Dev. 79: 517‐524, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
International trade in abalone meats, exclusive of their shells, is a lucrative business based upon both legally and illegally harvested abalone from many jurisdictions. The inability to visually identify abalone meat to species in the absence of the shell impedes enforcement efforts to reduce the illegal exploitation of the world’s abalone resources. We describe species-specific DNA sequences for the gamete recognition proteins, sperm lysin and vitelline egg receptor for lysin, and their use in forensic species identification among abalone of the northeastern Pacific Ocean. Some commercially relevant abalone species from the Northern and Southern hemispheres can be differentiated on the basis of the length of the second intron of the sperm lysin gene. The seven North American species of abalone that occupy the waters of Mexico, the USA and Canada can be distinguished based on sequence differentiation in the first three repeats of the vitelline receptor gene.  相似文献   

15.
《The Journal of cell biology》1995,130(5):1117-1125
Lysin is a 16-kD acrosomal protein used by abalone spermatozoa to create a hole in the egg vitelline envelope (VE) by a nonenzymatic mechanism. The crystal structure of the lysin monomer is known at 1.9 A resolution. The surface of the molecule reveals two tracks of basic residues running the length of one surface of the molecule and a patch of solvent-exposed hydrophobic residues on the opposite surface. Here we report that lysin dimerizes via interaction of the hydrophobic patches of monomers. Triton X-100 dissociates the dimer. The crystal structure of the dimer is described at 2.75 A resolution. Fluorescence energy transfer experiments show that the dimer has an approximate KD of 1 microM and that monomers exchange rapidly between dimers. Addition of isolated egg VE dissociates dimers, implicating monomers as the active species in the dissolution reaction. This work represents the first step in the elucidation of the mechanism by which lysin enables abalone spermatozoa to create a hole in the egg envelope during fertilization.  相似文献   

16.
Abalone sperm lysin is a 16 kDa acrosomal protein used by sperm to create a hole in the egg vitelline envelope. Lysins from seven California abalone exhibit species-specificity in binding to their egg receptor, and range in sequence identity from 63 % to 90 %. The crystal structure of the sperm lysin dimer from Haliotis fulgens (green abalone) has been determined to 1.71 A by multiple isomorphous replacement. Comparisons with the structure of the lysin dimer from Haliotis rufescens (red abalone) reveal a similar overall fold and conservation of features contributing to lysin's amphipathic character. The two structures do, however, exhibit differences in surface residues and electrostatics. A large clustering of non-conserved surface residues around the waist and clefts of the dimer, and differences in charged residues around these regions, indicate areas of the molecule which may be involved in species-specific egg recognition.  相似文献   

17.
During their journey through the oviductal pars recta, the vitelline envelope (VE) of Bufo arenarum oocytes encounter structural alterations that make them sensitive to attack by sperm lysin and thus to penetration by sperm cells. The role of pars recta (PR) on the specificity of fertilization between amphibians was analyzed by conditioning Bufo arenarum oocytes with either homologous PR extract (PRE) or Leptodactylus chaquencis PRE. The oocytes were thereafter exposed to sperm lysin preparations from both species. Lysis of the VE only took place when the oocytes were exposed to the homologous PRE. The pattern of protein composition of PRE of these species was strikingly different as shown by Coomassie blue staining of SDS-PAGE. Moreover, antibodies against PR fluid (PRF) of Bufo arenarum produced seven bands of immunoprecipitation in electrophoresed homologous PRE and only one faint band in Leptodactylus chaquencis PRE. Here we show that: (i) the biological activity of PR from Bufo arenarum and Leptodactylus chaquencis over the VE of Bufo arenarum oocytes is species-specific; (ii) this specificity seems to be based in differences in protein structure, which was indicated by the fact that proteins from PRE of Leptodactylus chaquencis and Bufo arenarum were antigenically distinct; (iii) the specificity was solely related to PR activity and not to sperm lysin activity since sperm lysin preparations from both species showed comparable activity.  相似文献   

18.
Maximum-likelihood models of codon substitution were used to analyze sperm lysin genes of 25 abalone (HALIOTIS:) species to identify lineages and amino acid sites under diversifying selection. The models used the nonsynonymous/synonymous rate ratio (omega = d(N)/d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio tests suggested significant variation in selective pressure among lineages. The variable selective pressure provided an explanation for the previous observation that the omega ratio is >1 in comparisons of closely related species and <1 in comparisons of distantly related species. Computer simulations demonstrated that saturation of nonsynonymous substitutions and constraint on lysin structure were unlikely to account for the observed pattern. Lineages linking closely related sympatric species appeared to be under diversifying selection, while lineages separating distantly related species from different geographic locations were associated with low evolutionary rates. The selective pressure indicated by the omega ratio was found to vary greatly among amino acid sites in lysin. Sites under potential diversifying selection were identified. Ancestral lysins were inferred to trace the route of evolution at individual sites and to provide lysin sequences for future laboratory studies.  相似文献   

19.
Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL is a major component of the VE surrounding the egg, includes a conserved zona pellucida (ZP) domain at its C-terminus, and possesses a unique, negatively charged domain of about 150 amino acids implicated in interactions with the positively charged lysin. Unlike for abalone VERL, where this unique VERL domain occurs in a tandem array of 22 repeats, Tegula VERL has just one such domain. Interspecific comparisons show that both lysin and the VERL domain diverge via positive selection, whereas the ZP domain evolves neutrally. Rates of nonsynonymous substitution are correlated between lysin and the VERL domain, consistent with sexual antagonism, although lineage-specific effects, perhaps owing to different ecologies, may alter the relative evolutionary rates of sperm- and egg-borne proteins.  相似文献   

20.
Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号