首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mataloni  G.  Tesol&#;n  G.  Sacullo  F.  Tell  G. 《Hydrobiologia》2000,432(1-3):65-72
Lakes from Maritime Antarctica are regarded as systems generally inhabited by metazoan plankton capable of imposing a top-down control on the phytoplankton during short periods, while lakes from Continental Antarctica lacking these communities would be typically controlled by scarcity of nutrients, following a bottom-up model. Otero Lake is a highly eutrophic small lake located on the NW of the Antarctic Peninsula, which has no metazoan plankton. During summer 1996, we studied the density, composition and vertical distribution of the phytoplankton community of this lake with respect to various abiotic variables, yet our results demonstrated neither light nor nutrient limitation of the phytoplankton biomass. Densities of heterotrophic nanoflagellates (HNAN) and ciliates from three different size categories were also studied. Extremely low densities of HNAN (0–155 ind. ml–1) could be due to feeding competition by bacterivore nanociliates and/or predation by large ciliates. A summer bloom of the phytoflagellate Chlamydomonas aff. celerrima Pascher reached densities tenfold those of previous years (158.103 ind. ml–1), though apparently curtailed by a strong peak of large ciliates (107 ind. ml–1) which would heavily graze on PNAN (phototrophic nanoflagellates). Top-down control can thus occur in this lake during short periods of long hydrologic residence time.  相似文献   

2.
The production and chlorophyll concentration of epipelic and epilithic algae was measured during four years (1972–1975) in two shallow, Swedish subarctic lakes. One lake (Lake Hymenjaure) was fertilized with phosphorus or a combination of phosphorus and nitrogen while the other (Lake Stugsjön) served as a reference. The benthic algae in both lakes were dominated by Cyanophyceae of the same species during the whole investigation. The chlorophyll concentration of epipelic and epilithic algae was 100 and 20 mg·m–2 respectively and fairly constant during the season. In 1974–1975 there was a significant increase in chlorophyll concentration of the benthic algae in Lake Hymenjaure, probably as a response to the poorer light climate in the lake due to a large phytoplankton development. The annual benthic production was 3.4–7.2 gC·m–2 and it was not enhanced by the fertilization. Compared to the other primary producers (phytoplankton and macrophytes) the benthic algae constituted 70–83% of the total production in Lake Stugsjön. In Lake Hymenjaure, however, the importance of the benthic algae decreased from 50 to 22% of the total due to the great increase in phytoplankton production induced by the lake fertilization.  相似文献   

3.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

4.
The relationships between producers (e.g., macrophytes, phytoplankton and epiphytic algae) and snails play an important role in maintaining the function and stability of shallow ecosystems. Complex relationships exist among macrophytes, epiphytic algae, phytoplankton, and snails. We studied the effects of snail communities (consisting of Radix swinhoei, Hippeutis cantori, Bellamya aeruginosa, and Parafossarulus striatulus) on the biomass of phytoplankton and epiphytic algae as well as on the growth of three species of submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and one exotic submerged plant, Elodea nuttallii) in a 90‐day outdoor mesocosm experiment conducted on the shore of subtropical Lake Liangzihu, China. A structural equation model showed that the snail communities affected the submerged macrophytes by grazing phytoplankton and epiphytic algae (reduction in phytoplankton Chl‐a and epiphytic algal abundance), enhancing the biomass of submerged macrophytes. Highly branched macrophytes with high surfaces and morphologies and many microhabitats supported the most snails and epiphytic algae (the biomass of the snail communities and epiphytic algae on Hverticillata was greater than that on Vnatans), and snails preferred to feed on native plants. Competition drove the snails to change their grazing preferences to achieve coexistence.  相似文献   

5.
Importance of tubificid populations on nitrogen cycle in two categories of shallow eutrophic lakes in the Danube Delta was quantitatively assessed for the 1992-1993 period. The structure of the primary producers in the studied lakes was used to discriminate between the two categories:(i) lakes dominated by macrophytes (A1) and (ii) lakes dominated by phytoplankton (A2). In both categories tubificid worms represented important fraction of the entire benthic community (35 and 32%, respectively, as number of individuals). They influence the sediment-water exchange of nutrients. The main processes involved are excretion of nutrients and their continuous release from sediments by molecular diffusion or through channels created by bioturbation. Inorganic nitrogen released from bottom sediments may regulate nitrogen load in the water body and thus, phytoplankton production. In 1992-1993, nitrogen stocks in tubificid biomass accounted for 5.3% in A1 lakes and 15.6% in A2 lakes of the amount stocked in phytoplankton, and only for 1.2 and 2.9% respectively, of the nitrogen load in water body. Nitrogen excretion rates ranged between 60.52 and 153.74 mg N m–2 year–1, and release rates from sediments between 378.26 and 960.87 mg N m–2 year–1, the lowest values being recorded for A2 category. Differences are related to tubificid biomass, structure and abundance of primary producers and to nutrient load in different ecosystems. Ratios between release rate of inorganic nitrogen by tubificid worms and sedimentation rate of organic nitrogen in the two categories of lakes were 8.3 and 6.4% respectively. Contribution of nitrogen released daily from sediments to the dissolved inorganic nitrogen load in the water column was less than 0.5%. However, in A1 and A2 lakes, the released nitrogen had a potential to sustain 24.74 and 8.01%, respectively, of the annual phytoplankton production. These values suggest the significance of tubificids in keeping the eutrophication process at a high level, especially during the periods when nitrogen is the main limiting factor for phytoplankton production.  相似文献   

6.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

7.
Qualitative and quantitative aspects of the phytoplankton of the River Meuse were studied during 1992, at a point 537 km from the source. The phytoplankton was dominated by diatoms and green algae. The Stephanodiscus hantzschii-group was especially prominent. Other important taxa were Cyclotella meneghiniana, small Cyclotella and Thalassiosira, Aulacoseira ambigua and Nitzschia acicularis. Cell abundances varied from less than 1000 units ml–1 to about 25 000 – 30 000 units ml–1 during the blooms. The Stephanodiscus hantzchii-group constituted almost entirely the first spring bloom. During the summer period, small Thalassiosiraceae developed markedly and large Thalassiosira weissflogii appeared. During this period, green algae dominated diatoms as expressed in cell abundances. The main Chlorococcales were Scenedesmus quadricauda, Scenedesmus div. sp., Dictyosphaerium ehrenbergianum and Pediastrum duplex. Dinophyceae contributed a significant biomass during the summer period. Total biomass varied between 100 and 3 650 µg Cl–1. As previously observed (Descy, 1987), the factors regulating the phytoplankton growth were clearly physical variables: discharge, temperature and irradiance. However, in the summer period, low abundances might indicate a regulation by biotic factors. The impact of grazing by zooplankton is discussed, on the basis of observations of zooplankton development in the River Meuse and on the basis of simulation by a mathematical model. A comparison is carried out with recent data of phytoplankton in large European rivers.  相似文献   

8.
We determined the biomass and community structure of macroinvertebrates (>500 µm) associated with macrophytes, sediments, and unvegetated open water in three oligosaline (0.8 to 8.0 mS cm–1) and three mesosaline (8.0 to 30.0 mS cm–1) lakes in the Wyoming High Plains, USA. Total biomass of epiphytic and benthic invertebrates did not change with salinity, but biomass of macroinvertebrate zooplankton in open water was significantly higher in mesosaline lakes. Community composition of invertebrates differed between the two salinity categories: large grazer/detritivores (gastropods and amphipods) were dominant in oligosaline lakes, whereas small planktivores and their insect predators were more prevalent in mesosaline lakes. Both direct physiological effects of salinity, as well as a shift in the form of primary production from macrophytes to phytoplankton, probably explain these changes in community composition. Salinity effects on invertebrate communities appear to be less important to top avian consumers than are costs of osmoregulation.  相似文献   

9.
Seasonal succession of the phytoplankton in the upper Mississippi River   总被引:1,自引:1,他引:0  
Species composition and seasonal succession of the phytoplankton were investigated on the upper Mississippi River at Prairie Island, Minnesota, U.S.A. Both the numbers and volume of individual species were enumerated based on cell counts with an inverted microscope. A succession similar to algal succession in the local lakes occurred. The diatoms were dominant during the spring and fall and blue-green algae were dominant during the summer. The algal concentrations have increased up to 40 fold the concentrations of the 1920's, since the installation of locks and dams. The maximum freshweight standing crop was 4 mg · l–1 in 1928 (Reinhard 1931), 13 mg · l–1 in 1975 a wet year, and 47 mg · l–1 in 1976, a relatively dry year with minimal current discharge. The diatoms varied from 36–99%, the blue-green algae from 0–44% and the cryptómonads from 0–50% of the total standing crop. The green algae were always present but never above 21% of the biomass. The dominant diatoms in recent years were centric -Stephanodiscus andCyclotella spp. (maximum 50,000 ml–1). The dominant blue-green algae wereAphanizomenon flos-aquae (L.) Ralfsex Born.et Flahault andOscillatoria agardhii Gomont (maximum 800 ml–1). These algal species are also present in local lakes. Shannon diversity values indicated greatest diversity of algae during the summer months.  相似文献   

10.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

11.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

12.
Bacterial community composition was monitored in four shallow eutrophic lakes during one year using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified prokaryotic rDNA genes. Of the four lakes investigated, two were of the clearwater type and had dense stands of submerged macrophytes while two others were of the turbid type characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had high nutrient levels (total phosphorus, >100 μg liter−1) while the other lakes had relatively low nutrient levels (total phosphorus, <100 μg liter−1). For each lake, seasonal changes in the bacterial community were related to bottom-up (resources) and top-down (grazers) variables by using canonical correspondence analysis (CCA). Using an artificial model dataset to which potential sources of error associated with the use of relative band intensities in DGGE analysis were added, we found that preferential amplification of certain rDNA genes over others does not obscure the relationship between bacterial community composition and explanatory variables. Besides, using this artificial dataset as well as our own data, we found a better correlation between bacterial community composition and explanatory variables by using relative band intensities compared to using presence/absence data. While bacterial community composition was related to phytoplankton biomass in the high-nutrient lakes no such relation was found in the low-nutrient lakes, where the bacterial community is probably dependent on other organic matter sources. We used variation partitioning to evaluate top-down regulation of bacterial community composition after bottom-up regulation has been accounted for. Using this approach, we found no evidence for top-down regulation of bacterial community composition in the turbid lakes, while grazing by ciliates and daphnids (Daphnia and Ceriodaphnia) was significantly related to changes in the bacterial community in the clearwater lakes. Our results suggest that in eutrophic shallow lakes, seasonality of bacterial community structure is dependent on the dominant substrate source as well as on the food web structure.  相似文献   

13.
The benthic communities of the saline lakes Abijata and Shala (Ethiopia)   总被引:1,自引:1,他引:0  
Lake Abijata lies in a shallow depression (maximum depth 8–9.5 m); the water is green with phytoplankton and it supports large fish and bird communities. Lake Shala lies in a deep caldera (maximum depth reputedly 260 m); phytoplankton is sparse and fish and bird communities scanty.Lakes Abijata and Shala, sampled in January, 1985, had conductivities of 14 000 and 21 000 microSiemens cm-1 at 25 °C respectively, mainly due to high sodium, carbonate and chloride ions. Calcium concentrations are very low.The benthic fauna was studied with an Ekman grab to a depth of 8.5 m in Abijata and 15.5 m in Shala and was found to be dense in both lakes but varying greatly in composition at different depths. In Abijata the benthos consisted mainly of Ostracoda and Chironomidae, and in Shala mainly of Tubificidae, Ostracoda and Chironomidae. There were very few Nematoda. No true halophilic species were found but the community consisted of euryhaline forms found also in non-saline waters. Predatory invertebrates were absent and many of the dominant species, notably of the Chironomidae, were different from those of non-saline lakes nearby.  相似文献   

14.
Planktonic algae are not abundant in the brackish waters of San Francisco Bay-estuary (mean chlorophyll a 5 µg 1–1), despite the high level of nutrients usually present due to the input of treated sewage from 3 million people. Macroalgae (seaweeds) are sometimes locally abundant in the Bay. Phytoplankton are abundant (chlorophyll a > 50 µg 1–1) and seaweeds uncommon in the almost freshwater Delta and upper estuary despite lower nutrient levels. Direct competition between these algal groups could explain the observed distributions.Given the size of the algae, large containers were needed for the determination of possible resource competition. Experiments were carried out in flow-through mesocosms (analog tanks) of 3 m3 volume. The macroalgae Ulva lactuca or Gigartina exasperata and a diatom-dominated phytoplankton, all from San Francisco Bay, were grown separately and together and with and without treated sewage effluent or other artificial nutrient additions. When grown alone phytoplankton and macroalgae were greatly stimulated by wastewater addition to unmodified baywater. The phytoplankton grew much more slowly in the presence of natural densities of Ulva. Allelochemical effects were tested for but not demonstrated.Resource competition for inorganic nitrogen was determined to be the probable cause of the depression of phytoplankton by Ulva. At its rapid growth rates in the flow-through mesocosms (up to 14% day–1) this macroalga can reduce inorganic nitrogen to low levels. Ulva has a greater affinity (lower KS) for nitrogen than do some of the plankton of the Bay. Ulva may outcompete phytoplankton by reducing nitrogen to levels below those capable of supporting phytoplankton growth. Other macroalgae such as Gigartina and Enteromorpha need to be studied to determine if they also can depress phytoplankton growth by resource competition.  相似文献   

15.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

16.
17.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

18.
Biomass assessments of algae in wetlands usually include only the phytoplankton community without considering the contribution of other algal associations to total algal biomass. This omission prevents an accurate evaluation of the phytoplankton community as an integral part of the total ecosystem. In the present work, the biomass contributions (expressed as chlorophyll-a content per m2 of lake) of phytoplankton, epiphyton on both submerged and emergent macrophytes, and epipelon were measured in Lacombe Lake, Argentina, for the purpose of (1) establishing the relative importance of the phytoplankton and (2) evaluating the entire contribution of algal biomass within the context of the Goldsborough & Robinson conceptual model. Our sampling was carried out monthly for a year in sites representative of different conditions with respect to water depth and type of macrophytes. Physicochemical analyses of water were performed following standard methods. Plankton was collected in a five-level profile at deeper stations and in subsurface samples at the shallow one. Samples of sediment obtained with corers were collected for epipelon sampling and segments of plants were cut at different levels, so as to obtain the epiphytes by scraping. Pigment was extracted with aqueous acetone and calculations were made by means of the Lorenzen equation. According to the Goldsborough & Robinson model, a Lake State developed here during the winter (phytoplankton maxima: 150 mg chlorophyll-a per m2). Then, through the subsequent growth of the submerged macrophytes, an Open State was observed, characterized by a maximum epiphyton biomass (at 3,502 mg chlorophyll-a per m2) along with lower levels of phytoplankton biomass. The epiphytic algae on the emergent macrophytes were always present but attained only relatively low biomass values (maximum: 120 mg of chlorophyll-a per m2 in February). The epipelon biomass varied between 50 and 252 mg chlorophyll-a per m2, registering a considerable contribution of settled algae from the water column (phytoplankton). This study contributes to our knowledge of wetland dynamics through its assessment of the rapid changes in the relative contributions of both planktonic and attached algae to the total algal biomass within the context of specific environmental factors. Guest editors: U. M. Azeiteiro, I. Jenkinson & M. J. Pereira Plankton Studies  相似文献   

19.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

20.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号