首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

2.
The kinetics of hydrolysis and transglycosylation reactions catalysed by cellobiase (β-d-glucoside glucohydrolase, EC 3.2.1.21) from Aspergillus foetidus in the cellobiose-d-glucose reaction system have been studied. The formation of transglycosylation products was observed at cellobiose concentrations >10?2m, whereas at lower substrate concentrations the only reaction product was d-glucose. In the cellobiase-catalysed transglycosylation a (1→6)-β-linkage was formed after the transfer of a d-glucose residue to acceptor molecule. The basic transglycosylation products were isocellotriose and gentiobiose. A small amount of oligosaccharides with a higher degree of polymerization was also formed. The maximum content of transglycosylation products amounted to 25–30% of the total saccharide content in the system at the initial cellobiose concentration (0.1–0.3 m). The processes in the reaction system were inhibited by the substrate and product (d-glucose). A general scheme for cellobiose hydrolysis has been proposed and validated, allowing for the inhibition and transglycosylation effects. Based on this scheme, a mathematical model for cellobiose hydrolysis has been suggested to describe the kinetics of substrate consumption and product (d-glucose) accumulation, as well as the kinetics of formation and consumption of transglycosylation products throughout the course of enzymatic reaction with various initial amounts of cellobiose, starting from low concentrations up to 0.2–0.3 m (7–11% bv weight).  相似文献   

3.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

4.
Strains of Trichoderma, particularly T. reesei and its mutants, are good sources of extracellular cellulase suitable for practical saccharification. They secrete a complete cellulase complex containing endo- and exo-glucanases plus β-glucosidase (cellobiase) which act syngergistically to degrade totally even highly resistant crystalline cellulose to soluble sugars. All strains investigated to date are inducible by cellulose, lactose, or sophorose, and all are repressible by glucose. Induction, synthesis and secretion of the β-glucanase enzymes appear to be closely associated. The composition and properties of the enzyme complex are similar regardless of the strain or inducing substrate although quantities of the enzyme secreted by the mutants are higher. Enzyme yields are proportional to initial cellulose concentration. Up to 15 filter paper cellulase units (20 mg of cellulase protein) per ml and productivities up to 80 cellulase units (130 mg cellulase protein) per litre per hour have been attained on 6% cellulose. The economics of glucose production are not yet competitive due to the low specific activity of cellulase (0.6 filter paper cellulase units/mg protein) and poor efficiency (about 15% of predicted sugar levels in 24 h hydrolyses of 10–25% substrate). As hydrolysis proceeds, the enzyme reaction slows due to increasing resistance of the residue, product inhibition, and enzyme inactivation. These problems are being attacked by use of pretreatments to increase the quantity of amorphous cellulose, addition of β-glucosidase to reduce cellobiose inhibition, and studies of means to overcome instability and increase efficiency of the cellulases. Indications are that carbon compounds derived from enzymatic hydrolysis of cellulose will be used as fermentation and chemical feedstocks as soon as the process economics are favourable for such application.  相似文献   

5.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

6.
In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between optimal temperatures and inhibitory glucose concentrations on the one hand (SHF) vs. sub-optimal temperatures and ethanol-inhibited cellulolysis on the other (SSF). Although the impact of ethanol on cellobiose hydrolysis was found to be negligible, formation of glucose and cellobiose from cellulose were found to be significantly inhibited by ethanol. A previous model for the kinetics of enzymatic cellulose hydrolysis was, therefore, extended with enzyme inhibition by ethanol, thus allowing a rational evaluation of SSF and SHF. The model predicted SSF processing to be superior. The superiority of SSF over SHF (separate hydrolysis and fermentation) was confirmed experimentally, both with respect to ethanol yield on glucose (0.41 g g?1 for SSF vs. 0.35 g g?1 for SHF) and ethanol production rate, being 30% higher for an SSF type process. High conversion rates were found to be difficult to achieve since at a conversion rate of 52% in a SSF process the reaction rate dropped to 5% of its initial value. The model, extended with the impact of ethanol on the cellulase complex proved to predict reaction progress accurately.  相似文献   

7.
The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary(1) to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.  相似文献   

8.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

9.
Ethanol production by Flammulina velutipes from high substrate concentrations was evaluated. F. velutipes produces approximately 40–60 g l−1 ethanol from 15 % (w/v) d-glucose, d-fructose, d-mannose, sucrose, maltose, and cellobiose, with the highest conversion rate of 83 % observed using cellobiose as a carbon source. We also attempted to assess direct ethanol fermentation from sugarcane bagasse cellulose (SCBC) by F. velutipes. The hydrolysis rate of 15 % (w/v) SCBC with commercial cellulase was approximately 20 %. In contrast, F. velutipes was able to produce a significant amount of ethanol from 15 % SCBC with the production of β-glucosidase, cellobohydrolase, and cellulase, although the addition of a small amount of commercial cellulase to the culture was required for the conversion. When 9 mg g−1 biomass of commercial cellulase was added to cultures, 0.36 g of ethanol was produced from 1 g of cellulose, corresponding to an ethanol conversion rate of 69.6 %. These results indicate that F. velutipes would be useful for consolidated bioprocessing of lignocellulosic biomass to bioethanol.  相似文献   

10.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

11.
《Experimental mycology》1990,14(4):405-415
The relationship between β-linked disaccharide (cellobiose, sophorose) utilization and cellulase, particularly cellobiohydrolase I (CBH I) synthesis by Trichoderma reesei, was investigated. During growth on cellobiose and sophorose as carbon sources in batch as well as resting-cell culture, only sophorose induced cellulase formation. In the latter experiments, sophorose was utilized at a much lower rate than cellobiose, and the more cellulase produced, the lower its rate of utilization. Cellobiose and sophorose were utilized by the fungus mainly via hydrolysis by the cell wall- and cell membrane-bound β-glucosidase. Addition of sophorose to T. reesei growing on cellulose did not further stimulate cellulase synthesis, and addition of cellobiose was inhibitory. Cellobiose, however, promoted cellulase formation in both batch and resting cell cultures, when its hydrolysis by β-glucosidase was inhibited by nojirimycin. No cellulase formation was observed when the uptake of glucose (produced from cellobiose by β-glucosidase) was inhibited by 3-O-methylglucoside. Cellodextrins (C2 to C6) promoted formation of low levels of cellobiohydrolase I in indirect proportion to their rate of hydrolysis by β-glucosidase. Studies on the uptake of [3H]cellobiose, [3H]sophorose, and [14C]glucose in the presence of inhibitors of β-glucosidase (nojirimycin) and glucose transport (3-O-methylglucoside) show that glucose transport occurs at a much higher rate than disaccharide hydrolysis. Extracellular disaccharide hydrolysis accounts for at least 95% of their metabolism. The presence of an uptake system for cellobiose was established by demonstrating the presence of intracellular labeled [3H]cellobiose in T. reesei after its extracellular supply. The data are consistent with induction of cellulase and particularly CBH I formation in T. reesei by β-linked disaccharides under conditions where their uptake is favored at the expense of extracellular hydrolysis.  相似文献   

12.
Two distinct exo-cellobiohydrolases (1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91) have been isolated from culture filtrates of Fusarium lini by repeated ammonium sulphate fractionation and isoelectric focusing. The purified enzymes were evaluated for physical properties, kinetics and the mechanism of their action. The results of this work were as follows. (1) A two-step enzyme purification procedure was developed, involving isoelectric focusing and ammonium sulphate fractionation. (2) Yields of pure cellobiohydrolases I and II were 45 and 36 mg l?1 of culture broth, respectively. (3) Both enzymes were found to be homogeneous, as determined by ultracentrifugation, isoelectric focusing, electrophoresis in polyacrylamide gels containing SDS and chromatography on Sephadex. (4) The molecular weights of the two cellobiohydrolases, as determined by gel filtration and SDS gel electrophoresis, were 50 000–57 000. (5) Both cellobiohydrolases had low viscosity-reducing and reducing sugar activity from carboxymethyl cellulose and high activity with Walseth cellulose and Avicel. (6) The enzymes produced only cellobiose as the end product from filter paper and Avicel, indicating that they are true cellobiohydrolases. (7) Cellobiohydrolase I hydrolysed d-xylan whereas cellobiohydrolase II was inactive towards d-xylan. (8) There was a striking synergism in filter paper activity when cellobiohydrolase was supplemented with endo-1,4-β-d-glucanase [cellulase, 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21).  相似文献   

13.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
A gene encoding cellobiose dehydrogenase (VvCDH) from Volvariella volvacea was successfully expressed in Pichia pastoris with codon optimization using its native signal sequence. VvCDH had optimum pH and temperature at 5.5 and 60 °C respectively and showed a broad range of pH stability between 5 and 8. Kinetic analysis showed that the best substrate is cellobiose and that the Km for celloolgosaccharides increases with substrate length. Moreover, lactose is also efficiently oxidized, but glucose and maltose are poor substrates. A large amount of gluconic acid was generated and the overall hydrolysis yield was increased when adding VvCDH to Trichoderma reesei D-86271 enzymatic cocktail during hydrolysis of cellulose substrates, indicating VvCDH involved in the enzymatic cellulose saccharification. VvCDH shows some different enzymatic properties from basidiomycetous CDHs and can be supplemented to T. reesei cellulase cocktail for commercial application.  相似文献   

15.
The kinetics of the hydrolysis of microcrystalline cellulose (MC) by a Trichoderma reesei cellulase complex and by the individual endoglucanase (pI 4.4–5.2) and cellobiohydrolase (pI 4.0–4.2) has been studied. A flow chart for the enzymatic hydrolysis of the cellulose has been revealed, which formed a basis for a computer simulation of the kinetic regularities observed. As a result of it, the values of the catalytic rate constants for the individual stages of the enzymatic degradation of MC have been calculated. Then, the synergistic behaviour of endoglucanase and cellobiohydrolase in the hydrolysis of MC has been described both quantitatively and graphically. The relative efficiency of the individual stages for the MC hydrolysis in terms of glucose and cellobiose formation for cellulase complexes of various composition has been calculated. It was quantitatively shown that cellobiohydrolase plays the key role in the MC hydrolysis by T. reesei cellulase preparations, because it gives up to 80% glucose and up to 80–90% cellobiose in the presnce of endoglucanase which in turn plays a relatively minor role in a direct formation of both soluble products of the hydrolysis.  相似文献   

16.
A multistep approach was taken to investigate the intrinsic kinetics of the cellulase enzyme complex as observed with hydrolysis of noncrystalline cellulose (NCC). In the first stage, published initial rate mechanistic models were built and critically evaluated for their performance in predicting time-course kinetics, using the data obtained from enzymatic hydrolysis experiments performed on two substrates: NCC and alpha-cellulose. In the second stage, assessment of the effect of reaction intermediates and products on intrinsic kinetics of enzymatic hydrolysis was performed using NCC hydrolysis experiments, isolating external factors such as mass transfer effects, physical properties of substrate, etc. In the final stage, a comprehensive intrinsic kinetics mechanism was proposed. From batch experiments using NCC, the time-course data on cellulose, cello-oligosaccharides (COS), cellobiose, and glucose were taken and used to estimate the parameters in the kinetic model. The model predictions of NCC, COS, cellobiose, and glucose profiles show a good agreement with experimental data generated from hydrolysis of different initial compositions of substrate (NCC supplemented with COS, cellobiose, and glucose). Finally, sensitivity analysis was performed on each model parameter; this analysis provides some insights into the yield of glucose in the enzymatic hydrolysis. The proposed intrinsic kinetic model parametrized for dilute cellulose systems forms a basis for modeling the complex enzymatic kinetics of cellulose hydrolysis in the presence of limiting factors offered by substrate and enzyme characteristics.  相似文献   

17.
Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion in the parallel batch reaction was only ~5 % by weight. Also, a synergistic effect, achieving ~27 % substrate conversion, was obtained by addition of endo-1,4-β-d-glucanase. The synergistic effect was only obtained with product removal. By using pure, monoactive enzymes, the work illustrates the profound gains achievable by intermittent product removal during cellulose hydrolysis.  相似文献   

18.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
Trichoderma viride 1,4-β-d-glucan cellobiohydrolase (exo-cellobiohydrolase, 1,4-β-d-glucan cellobiohydrolase, EC 3.2.1.91) purified from a commercial product to electrophoretic homogeneity by a procedure including affinity and DEAE-Sephadex chromatography, has attached carbohydrates in addition to the glycoprotein constituents. These carbohydrates are lost by consecutive gel filtration steps in Sephadex G-25 columns, whereupon there is a rapid increase in enzymatic activity. A single gel filtration step can eliminate d-glucose or cellobiose added to a solution of this enzyme, but not the carbohydrates attached during incubation with Avicel.After free carbohydrate elimination from crude cellulase complexes by Sephadex G-25 chromatography, liberation of d-glucose following incubation at 50°C and pH 4.8 was observed. This indicates that some carbohydrates remain bound after gel filtration. The elimination of carbohydrate from whole cellulase complex [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] was favoured by a yeast treatment, with a simultaneous increase in activity, but the process is not reproducible, as a secondary inactivation process exists.  相似文献   

20.
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号