首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Summary The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome.  相似文献   

2.
Summary Most patients with the complex association aniridia — predisposition to Wilms' tumor (WAGR syndrome) present with a de novo constitutional deletion of band 11p13. We report a patient with WAGR syndrome and a reciprocal translocation between chromosomes 5 and 11 t(5;11)(q11;p13). High resolution banding cytogenetic analysis and molecular characterization using 11p13 DNA markers showed a tiny deletion encompassing the gene for CAT but sparing the gene for FSHB. This suggests that syndromes associated with apparently balanced translocations may be due to undetectable loss of material at the breakpoint(s) rather than to breakage in the gene itself.  相似文献   

3.
The distal region of 11p13 and associated genetic diseases.   总被引:3,自引:0,他引:3  
The distal region of human chromosome band 11p13 is believed to contain a cluster of genes involved in the development of the eye, kidney, urogenital tract, and possibly the nervous system. Genetic abnormalities of this region can lead to Wilms tumor, aniridia, urogenital abnormalities, and mental retardation (WAGR syndrome). Using 11 DNA markers covering the entire distal region of 11p13, including the WAGR region, we have carried out molecular studies on 58 patients with one or more features of this syndrome and patients with other diseases or structural cytogenetic abnormalities associated with 11p13. Cytogenetic analyses were performed in all cases. In 12 patients we were able to demonstrate deletions of this region. In 2 patients balanced translocations and in 2 additional patients duplications of this region were characterized. In total, 5 chromosomal breakpoints within 11p13 were identified. One of these breakpoints maps within the smallest region of overlap of WAGR deletions. Moreover, we were unable to demonstrate constitutional deletions in a candidate sequence for the Wilms tumor gene or any other marker in 2 patients with aniridia and urogenital abnormalities, 4 patients with Wilms tumor and urogenital abnormalities, 5 patients with bilateral Wilms tumors, and 3 familial Wilms tumor cases. We suggest that the molecular techniques used here (heterozygosity testing for polymorphic markers mapping between AN2 and WT1 and deletion analysis by dosage, cytogenetic analysis, or in situ hybridization) can be employed to identify sporadic aniridia patients with and without increased tumor risk.  相似文献   

4.
Children with constitutional deletions of chromosome 11p13 suffer from aniridia, genitourinary malformations, and mental retardation and are predisposed to develop bilateral Wilms tumor (the WAGR syndrome). The critical region for these defects has been narrowed to a segment of band 11p13 between the catalase and the beta-follicle-stimulating hormone genes. In this report, we have cloned the endpoints from a WAGR patient whose large cytogenetic deletion, del(11)(p14.3::p13), does not include the catalase gene. The deletion was characterized using DNA polymorphisms and found to originate in the paternally derived chromosome 11. The distal endpoint was identified as a rearrangement of locus D11S21 in conventional Southern blots of the patient's genomic DNA, but was not detected in leukocyte DNA from either parent or in sperm DNA from the father. The proximal endpoint was isolated by cloning the junction fragment and was mapped in relation to other markers and breakpoints. It defines a new locus in 11p13-delta J, which is close to the Wilms tumor gene and the breakpoint cluster region (TCL2) of the frequent t(11;14)(p13;q11) translocation in acute T-cell leukemia. An unusual concentration of base pair substitutions was discovered at delta J, in which 9 of 44 restriction sites tested (greater than 20%) vary in the population. This property makes delta J one of the most polymorphic loci on chromosome 11 and may reflect an underlying instability that contributed to the original mutation. The breakpoint extends the genetic map of this region and provides a useful marker for linkage studies and the analysis of allelic segregation in tumor cells.  相似文献   

5.
Summary The human gene encoding the myogenic determination factor myf3 (mouse MyoD1) has been mapped to the short arm of chromosome 11. Analysis of several somatic cell hybrids containing various derivatives with deletions or translocations revealed that the human MyoD (MYF3) gene is not associated with the WAGR locus at chromosomal band 11p13 nor with the loss of the heterozygosity region at 11p15.5 related to the Beckwith-Wiedemann syndrome. Subregional mapping by in situ hybridization with an myf3 specific probe shows that the gene resides at the chromosomal band 11p14, possibly at 11pl4.3.  相似文献   

6.
M Gessler  G A Bruns 《Genomics》1988,3(2):117-123
Chromosome 11p13 is frequently rearranged in individuals with the WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) or parts of this syndrome. To map the cytogenetic aberrations molecularly, we screened DNA from cell lines with known WAGR-related chromosome abnormalities for rearrangements with pulsed field gel (PFG) analysis using probes deleted from one chromosome 11 homolog of a WAGR patient. The first alteration was detected in a cell line from an individual with aniridia, genitourinary anomalies, mental retardation, and a deletion described as 11p14.1-p13. We have located one breakpoint close to probe HU11-164B and we have cloned both breakpoint sites as well as the junctional fragment. The breakpoints subdivide current intervals on the genetic map, and the probes for both sides will serve as important additional markers for a long-range restriction map of this region. Further characterization and sequencing of the breakpoints may yield insight into the mechanisms by which these deletions occur.  相似文献   

7.
Aniridia can arise as part of the WAGR syndrome (Wilms tumour. aniridia, genitourinary anomalies, and mental retardation), due to a deletion or chromosomal region 11p13. We report a girl with a complete WAGR syndrome, whose brother presented hypospadias. Cytogenetic, FISH and molecular studies showed a deletion in one chromosome 11 of the patient. No cytogenetic rearrangement or deletion affecting the genes included in this region (PAX6 and WT1) were observed in her brother and parents. This excludes a higher risk than that of the general population for developing Wilms tumour in the brother and supports that the presence of WAGR syndrome in the patient and hypospadias in her brother is a chance association. We conclude that the identification and definition of the deletions in the WAGR region, which include the WT1 locus are important in order to identify a high tumour risk in infant patients with aniridia including those without other WAGR anomalies.  相似文献   

8.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

9.
A deletion map of the WAGR region on chromosome 11.   总被引:10,自引:2,他引:8       下载免费PDF全文
The WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) region has been assigned to chromosome 11p13 on the basis of overlapping constitutional deletions found in affected individuals. We have utilized 31 DNA probes which map to the WAGR deletion region, together with six reference loci and 13 WAGR-related deletions, to subdivide this area into 16 intervals. Specific intervals have been correlated with phenotypic features, leading to the identification of individual subregions for the aniridia and Wilms tumor loci. Delineation, by specific probes, of multiple intervals above and below the critical region and of five intervals within the overlap area provides a framework map for molecular characterization of WAGR gene loci and of deletion boundary regions.  相似文献   

10.
Genetic analysis of the cells of a WAGR patient (W, predisposition to Wilms tumor; A, aniridia; G, genitourinary abnormalities; R, mental retardation), bearing a partial deletion of band 11p13, was performed with biochemical and antigenic 11p markers by using gene dosage, somatic hybridization, molecular hybridization, and indirect immunofluorescence techniques. These studies allowed the regional assignment of the gene for catalase, which is linked to the Wilms tumor locus, between MIC4 and MIC11, two loci encoding for membrane antigens previously mapped to band 11p13.  相似文献   

11.
Summary Genes implicated in the development of Wilms' tumour (WT) and aniridia (AN2) have been localised to a subregion of band p13 on chromosome 11 by molecular and cytogenetic characterisation of WAGR syndrome patients carrying variable constitutional deletions. Polymorphic markers for the region would be valuable for linkage analysis in the familial forms of both Wilms' tumour and aniridia, as well as for studying somatic rearrangements of chromosome 11 in a variety of tumour types. Here we describe the isolation and characterisation of three frequently polymorphic arbitrary DNA fragments that map proximal to the AN2 and WT loci.  相似文献   

12.
Summary In this paper we describe the analysis of genetic changes in chromosome 11 in Wilms' tumours. Using a range of probes for regions 11p15, 11p13 and 11q we have screened DNA from 14 Wilms' tumours together with control DNA obtained from the patients' lymphocytes and their parents. We have been able to demonstrate loss of heterozygosity in 5 of the 14 different Wilms' tumours. In three of these five tumours, loss of heterozygosity did not involve markers for 11p13, 11p15.4 or the proximal region of 11p15.5, but only some markers assigned to the most distal part of 11p15.5. In two of these tumours we could demonstrate unequal mitotic recombination in 11p with breakpoints in the hypervariable regions 5 of the insulin gene and/or 3 of the HRASI protooncogene. In one tumour, from a Beckwith-Wiedemann patient, all markers for the region 11a13-pter became hemizygous; the region 11q13-qter remained heterozygous. These results demonstrate that loss of heterozygosity in Wilms' tumours may not necessarily involve the proposed Wilms' tumour locus at 11p13 but may be limited to 11p15.5. This suggests that not only the 11p13 region, but also the 11p15.5 region is involved in Wilms' tumour development. The possible role of both regions in the development of Wilms' tumour is discussed.  相似文献   

13.
Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 of which included WT1. A further 13 patients had cryptic deletions detectable only by FISH, 3 of which included WT1. Six of these, with deletions <500 kb, share a similar proximal breakpoint within a cosmid containing the last 10 exons of PAX6 and part of the neighboring gene, ELP4. Two of these six patients were mosaic for the deletion. The remaining four had chromosomal rearrangements: an unbalanced translocation, t(11;13), with a deletion including the WAGR (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) region, and three balanced rearrangements with what appear to be position effect breakpoints 3' of PAX6: (a) a t(7;11) with the 11p13 breakpoint approximately 30 kb downstream of PAX6, (b) a dir ins(12;11) with a breakpoint >50 kb from PAX6, and (c) an inv(11)(p13q13) with a breakpoint >75 kb downstream of PAX6. The proportion and spectrum of chromosome anomalies in familial (4/14, or 28.5%) and sporadic (26/63, or 41%) cases are not significantly different. An unexpectedly high frequency of chromosomal rearrangements is associated with both sporadic and familial aniridia in this cohort.  相似文献   

14.
To map in detail the human gene for brain derived neurotrophic factor (BDNF) we have used a PCR-based assay to amplify the gene from somatic cell hybrids containing human chromosome 11 with deletion or translocation breakpoints in the WAGR region. The BDNF gene maps between the FSHB and HVBS1 loci, an interval of approximately 4 Mb at the boundary of 11p13 and 11p14.  相似文献   

15.
A physical map around the WAGR complex on the short arm of chromosome 11   总被引:6,自引:0,他引:6  
M Gessler  G A Bruns 《Genomics》1989,5(1):43-55
A long-range restriction map of part of the short arm of chromosome 11 including the WAGR region has been constructed using pulsed-field gel electrophoresis and a number of infrequently cutting restriction enzymes. A total of 15.4 Mbp has been mapped in detail, extending from proximal 11p14 to the distal part of 11p12. The map localizes 35 different DNA probes and reveals at least nine areas with features characteristic of HTF islands, some of which may be candidates for the different loci underlying the phenotype of the WAGR syndrome. This map will furthermore allow screening of DNA from individuals with WAGR-related phenotypes and from Wilms tumors for associated chromosomal rearrangements.  相似文献   

16.
Wilms tumor of the kidney occurs with increased frequency in association with two clinically and cytogenetically distinct congenital syndromes, the Wiedemann-Beckwith syndrome (WBS) and the triad of aniridia, genitourinary anomalies, and mental retardation (WAGR). Constitutional deletions in the latter situation and similar alterations in sporadic Wilms tumors have implicated the chromosomal 11p13 region in neoplastic development. In contrast, some sporadic cases of WBS have been reported to have a constitutional duplication of chromosome 11p15. In order to resolve this seeming paradox, we have analyzed a family segregating WBS for linkage to DNA markers mapped to chromosome 11p. Consonant with the cytogenetic alterations in sporadic WBS cases, we obtained evidence for tight linkage of the mutation causing the syndrome to markers located at 11p15.5. Also consistent with this localization, we identified a subset of Wilms tumors, not associated with WBS, which have attained somatic homozygosity through mitotic recombination, with the smallest shared region of overlap being distal to the beta-globin complex at 11p15.5. These data provide evidence that familial WBS likely results from a defect at the same genetic locus as does its sporadic counterpart. Further, the data suggest there is another locus, distinct from that involved in the WAGR syndrome, which plays a role in the association of Wilms tumor with WBS.  相似文献   

17.
Children with associated Wilms' tumor, aniridia, genitourinary malformations, and mental retardation (WAGR syndrome) frequently have a cytogenetically visible germ line deletion of chromosomal band 11p13. In accordance with the Knudson hypothesis of two-hit carcinogenesis, the absence of this chromosomal band suggests that loss of both alleles of a gene at 11p13 causes Wilms' tumor. Consistent with this model, chromosomes from sporadically occurring Wilms' tumor cells frequently show loss of allelic heterozygosity at polymorphic 11p15 loci, and therefore it has been assumed that allelic loss extends proximally to include 11p13. We report here that in samples from five sporadic Wilms' tumors, allelic loss occurred distal to the WAGR locus on 11p13. In cells from one tumor, mitotic recombination occurred distal to the gamma-globin gene on 11p15.5. Thus, allelic loss in sporadic Wilms' tumor cells may involve a second locus on 11p.  相似文献   

18.
Chromosome 11p15 deletions occur frequently in several types of human cancer, both sporadic and familial, suggesting that a tumor suppressor gene is present within the deleted chromosome region. We carried out a restriction fragment length polymorphism analysis of chromosome 11p in two types of human brain tumors: malignant astrocytoma, the most common glial tumor in adults; and primitive neuroectodermal tumor (PNET), a malignant embryonic tumor that afflicts children. Loss of heterozygosity was found in 11/43 malignant astrocytomas (26%) and in 3/11 PNETs (27%). Deletion mapping revealed a region of loss on chromosome 11p (p15.4-pter) that was common to both tumor types. To determine whether the c-H-ras gene, located on chromosome 11p in the common region of deletion, was a candidate gene, we analyzed polymerase chain reaction products corresponding to all four c-H-ras coding exons for single-strand conformation polymorphisms. The absence of electrophoretic mobility shifts in tumor DNA compared to leukocyte DNA indicated that c-H-ras gene mutations were most likely not present. These results suggested that loss of a gene on chromosome 11p15 distinct from c-H-ras is an important step in tumorigenesis within the central nervous system in both children and adults.  相似文献   

19.
We report the chromosomal localization in both mouse and human of a novel G-protein-coupled receptor, GPR48, which resembles glycoprotein hormone receptors, that may be implicated in Wilms tumor deletion syndromes such as WAGR. This receptor forms a novel sub-family of glycoprotein hormone-like GPCRs. We have mapped this receptor to human chromosome 11p14-->p13 by several approaches, including radiation hybrid and interspecific backcross mapping, and show that GPR48 is close to BDNF. This data differs from the recently published mapping of LGR4 (5q34-->q35.1) (Hsu et al., 1998). Additionally, we show that Gpr48 and Bdnf are tightly linked on mouse chromosome 2, in a region with conserved synteny to human 11p14-->p13.  相似文献   

20.
Use of catalase polymorphisms in the study of sporadic aniridia   总被引:1,自引:1,他引:0  
Summary Catalase is known to map at chromosome 11p13. It is one of the closest known markers to the WAGR locus. Restriction fragment length polymorphisms (RFLP) of the catalase gene may be invaluable for studying rearrangements in somatic tumours, linkage in cases of familial Wilms tumour, and the relationship between sporadic and familial aniridia. We describe a catalase RFLP with two different enzymes and use these polymorphisms to exclude deletion of the catalase gene in patients with sporadic aniridia, including one who is known to have a deletion and another suspected of having a deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号