首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, Pph21 and Pph22 are the two catalytic subunits of type 2A phosphatase (PP2Ac), and Sit4 is a major form of 2A-like phosphatase. The function of these phosphatases requires their association with different regulatory subunits. In addition to the conventional regulatory subunits, namely, the A and B subunits for Pph21/22 and the Sap proteins for Sit4, these phosphatases have been found to associate with a protein termed Tap42. In this study, we demonstrated that Sit4 and PP2Ac interact with Tap42 via an N-terminal domain that is conserved in all type 2A and 2A-like phosphatases. We found that the Sit4 phosphatase in the sit4-102 strain contains a reverse-of-charge amino acid substitution within its Tap42 binding domain and is defective for formation of the Tap42-Sit4 complex. Our results suggest that the interaction with Tap42 is required for the activity as well as for the essential function of Sit4 and PP2Ac. In addition, we showed that Tap42 is able to interact with two other 2A-like phosphatases, Pph3 and Ppg1.  相似文献   

2.
Physiological functions of protein phosphatase 2A (PP2A) are determined via the association of its catalytic subunit (PP2Ac) with diverse regulatory subunits. The predominant form of PP2Ac assembles into a heterotrimer comprising the scaffolding PR65/A subunit together with a variable regulatory B subunit. A distinct population of PP2Ac associates with the Tap42/alpha4 subunit, an interaction mutually exclusive with that of PR65/A. Tap42/alpha4 is also an interacting subunit of the PP2Ac-related phosphatases, PP4 and PP6. Tap42/alpha4, an essential protein in yeast and suppressor of apoptosis in mammals, contributes to critical cellular functions including the Tor signaling pathway. Here, we describe the crystal structure of the PP2Ac-interaction domain of Saccharomyces cerevisiae Tap42. The structure reveals an all alpha-helical protein with striking similarity to 14-3-3 and tetratricopeptide repeat (TPR) proteins. Mutational analyses of structurally conserved regions of Tap42/alpha4 identified a positively charged region critical for its interactions with PP2Ac. We propose a scaffolding function for Tap42/alpha4 whereby the interaction of PP2Ac at its N-terminus promotes the dephosphorylation of substrates recruited to the C-terminal region of the molecule.  相似文献   

3.
4.
5.
6.
Ahn CS  Han JA  Lee HS  Lee S  Pai HS 《The Plant cell》2011,23(1):185-209
Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.  相似文献   

7.
Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42-phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42-Sit4 complex and that of Rrd2 with the Tap42-PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42-phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.  相似文献   

8.
The type 2A (PP2A) and type 2A-like (PP4 and PP6) serine/threonine phosphatases participate in a variety of cellular processes, such as cell cycle progression, signal transduction and apoptosis. Previously, we reported that the PP6 catalytic subunit MoPpe1, which interacts with and is suppressed by type 2A associated protein of 42 kDa (MoTap42), an essential protein involved in the target of rapamycin (TOR) signalling pathway, has important roles in development, virulence and activation of the cell wall integrity (CWI) pathway in the rice blast fungus Magnaporthe oryzae. Here, we show that Tap42-interacting protein 41 (MoTip41) mediates crosstalk between the TOR and CWI signalling pathways; and participates in the TOR pathway via interaction with MoPpe1, but not MoTap42. The deletion of MoTIP41 resulted in disruption of CWI signalling, autophagy, vegetative growth, appressorium function and plant infection, as well as increased sensitivity to rapamycin. Further investigation revealed that MoTip41 modulates activation of the CWI pathway in response to infection by interfering with the interaction between MoTap42 and MoPpe1. These findings enhance our understanding of how crosstalk between TOR and CWI signalling modulates the development and pathogenicity of M. oryzae.  相似文献   

9.
Members of the phosphoprotein phosphatase family of serine/threonine phosphatases are thought to exist in different native oligomeric complexes. Protein phosphatase 2A (PP2A) is composed of a catalytic subunit (PP2Ac) that complexes with an A subunit, which in turn also interacts with one of many B subunits that regulate substrate specificity and/or (sub)cellular localization of the enzyme. Another family member, protein phosphatase 5 (PP5), contains a tetratricopeptide repeat domain at its N terminus, which has been suggested to mediate interactions with other proteins. PP5 was not thought to interact with partners homologous to the A or B subunits that exist within PP2A. However, our results indicate that this may not be the case. A yeast two-hybrid screen revealed an interaction between PP5 and the A subunit of PP2A. This interaction was confirmed for endogenous proteins in vivo using immunoprecipitation analysis and for recombinant proteins by in vitro binding experiments. Our results also indicate that the tetratricopeptide repeat domain of PP5 is required and sufficient for this interaction. In addition, immunoprecipitated PP5 contains associated B subunits. Thus, our results suggest that PP5 can exist in a PP2A-like heterotrimeric form containing both A and B subunits.  相似文献   

10.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

11.
The TOR (target of rapamycin) pathway controls cell growth in response to nutrient availability in eukaryotic cells. Inactivation of TOR function by rapamycin or nutrient exhaustion is accompanied by triggering various cellular mechanisms aimed at overcoming the nutrient stress. Here we report that in Saccharomyces cerevisiae the protein kinase C (PKC)-mediated mitogen-activated protein kinase pathway is regulated by TOR function because upon specific Tor1 and Tor2 inhibition by rapamycin, Mpk1 is activated rapidly in a process mediated by Sit4 and Tap42. Osmotic stabilization of the plasma membrane prevents both Mpk1 activation by rapamycin and the growth defect that occurs upon the simultaneous absence of Tor1 and Mpk1 function, suggesting that, at least partially, TOR inhibition is sensed by the PKC pathway at the cell envelope. This process involves activation of cell surface sensors, Rom2, and downstream elements of the mitogen-activated protein kinase cascade. Rapamycin also induces depolarization of the actin cytoskeleton through the TOR proteins, Sit4 and Tap42, in an osmotically suppressible manner. Finally, we show that entry into stationary phase, a physiological situation of nutrient depletion, also leads to the activation of the PKC pathway, and we provide further evidence demonstrating that Mpk1 is essential for viability once cells enter G(0).  相似文献   

12.
Y Jiang  J R Broach 《The EMBO journal》1999,18(10):2782-2792
Tor proteins, homologous to DNA-dependent protein kinases, participate in a signal transduction pathway in yeast that regulates protein synthesis and cell wall expansion in response to nutrient availability. The anti-inflammatory drug rapamycin inhibits yeast cell growth by inhibiting Tor protein signaling. This leads to diminished association of a protein, Tap42, with two different protein phosphatase catalytic subunits; one encoded redundantly by PPH21 and PPH22, and one encoded by SIT4. We show that inactivation of either Cdc55 or Tpd3, which regulate Pph21/22 activity, results in rapamycin resistance and that this resistance correlates with an increased association of Tap42 with Pph21/22. Furthermore, we show Tor-dependent phosphorylation of Tap42 both in vivo and in vitro and that this phosphorylation is rapamycin sensitive. Inactivation of Cdc55 or Tpd3 enhances in vivo phosphorylation of Tap42. We conclude that Tor phosphorylates Tap42 and that phosphorylated Tap42 effectively competes with Cdc55/Tpd3 for binding to the phosphatase 2A catalytic subunit. Furthermore, Cdc55 and Tpd3 promote dephosphorylation of Tap42. Thus, Tor stimulates growth-promoting association of Tap42 with Pph21/22 and Sit4, while Cdc55 and Tpd3 inhibit this association both by direct competition and by dephosphorylation of Tap42. These results establish Tap42 as a target of Tor and add further refinement to the Tor signaling pathway.  相似文献   

13.
Tap42/α4 is a regulatory subunit of the protein phosphatase 2A (PP2A) family of phosphatases and plays a role in the target of rapamycin (TOR) pathway that regulates cell growth, ribosome biogenesis, translation and cell cycle progression in both yeast and mammals. We determined the cellular functions of Tap46, the plant homolog of Tap42/α4, in both Arabidopsis thaliana and Nicotiana benthamiana. Tap46 associated with the catalytic subunits of PP2A and the PP2A-like phosphatases PP4 and PP6 in vivo. Tap46 was phosphorylated by TOR in vitro, indicating that Tap46 is a direct substrate of TOR kinase. Tap46 deficiency caused cellular phenotypes that are similar to TOR-depletion phenotypes, including repression of global translation and activation of both autophagy and nitrogen recycling. Furthermore, Tap46 depletion regulated total PP2A activity in a time-dependent manner similar to TOR deficiency. These results suggest that Tap46 acts as a positive effector of the TOR signaling pathway in controlling diverse metabolic processes in plants. However, Tap46 silencing caused acute cell death, while TOR silencing only hastened senescence. Furthermore, mitotic cells with reduced Tap46 levels exhibited chromatin bridges at anaphase, while TOR depletion did not cause a similar defect. These findings suggest that Tap46 may have TOR-independent functions as well as functions related to TOR signaling in plants.Key words: acute cell death, autophagy, chromatin bridge, nitrogen mobilization, protein phosphatases, target of rapamycin (TOR)Yeast type 2A phosphatase-associated protein 42 kDa (Tap42) is a regulatory subunit that directly associates with catalytic subunits of the protein phosphatase 2A (PP2A) family of protein phosphatases to make a heterodimer and regulates the activity and substrate specificity of the intact enzyme complex.1 Functions of Tap42 as a component of the target of rapamycin (TOR) signaling pathway have been well characterized in yeast.13 Tap42-regulated phosphatase activities play a major role in signal transduction mediated by TOR. Accumulating evidence suggest that TOR regulates phosphorylation of target proteins by restraining PP2A activity through Tap42 phosphorylation.13 Rapamycin inhibits TOR activity and also influences Tap42-mediated phosphatase regulation in yeast.35α4, the mammalian homolog of Tap42, also associates with the catalytic subunits of PP2A, PP4 and PP6 to make a heterodimer.6 Rapamycin inhibits mammalian TOR (mTOR) activity, but it is not clear whether rapamycin prevents the formation of the α4/PP2Ac complex or whether α4 stimulates or represses PP2Ac activity.79 Interestingly, loss of Tap42 function in Drosophila does not affect TOR-regulated activities, including cell growth, metabolism and S6 kinase activity, but results in mitotic arrest caused by spindle anomalies and subsequent activation of c-Jun N-terminal kinase signaling and apoptosis.10 Similarly, α4 deletion in mice leads to the rapid onset of apoptosis in both proliferating and differentiated cells, while rapamycin itself does not severely affect adult cells.11 Furthermore, while TOR depletion causes developmental arrest and organ degeneration at the L3 stage in Caenorhabditis elegans, loss of α4 does not reproduce TOR deficiency phenotypes, but mainly leads to a fertility defect.12 Taken together, these results suggest that the yeast Tap42/TOR paradigm is not completely conserved in higher eukaryotes and that Tap42/α4 functions may not be exclusively dependent on the Tor signaling pathway.In this study, we investigated the in vivo functions and phosphatase regulation of Tap46, the plant Tap42/α4 homolog, in relation to TOR in Nicotiana benthamiana, Arabidopsis and tobacco BY2 cells. Tap46 was shown to interact with the catalytic subunits of PP2A, PP4 and PP6 in vivo. Recombinant Tap46 protein was phosphorylated by immunoprecipitated TOR kinase and its deletion forms in vitro. Dexamethasone-induced RNAi of Tap46 caused dramatic repression of global translation and activation of both autophagy and nitrogen mobilization in the early stages of gene silencing. These phenotypes mimic those of TOR inactivation or TOR deficiency in Arabidopsis, yeast and mammals, indicating that Tap46 is a critical mediator of the Tor pathway in the regulation of these metabolic processes in plants. However, these early phenotypes of Tap46-deficient plants were soon followed by an acute and rapid programmed cell-death (PCD), while TOR silencing only led to growth retardation and premature senescence in Arabidopsis and N. benthamiana, confirming results from a previous study.13 The PCD caused by Tap46 deficiency is consistent with the apoptosis induced by loss of Tap42/α4 function in both Drosophila and mice.10,11 Thus Tap42/α4/Tap46 appears to have a strong anti-apoptotic activity in higher eukaryotes. The underlying mechanisms of PCD activation caused by Tap46 depletion remain to be revealed, but it is possible that the inappropriate modulation of phosphatase activity and aberrant protein phosphorylation led to stress signaling and PCD activation.Another interesting phenotype of Tap46 deficiency is the formation of chromatin bridges in anaphase during mitosis, suggesting a role for Tap46 in plant cell mitotic progression. However, there have been no reports of anaphase bridge formation in tor mutants of any organisms. In Drosophila, loss of Tap42 function causes spindle disorganization and pre-anaphase arrest prior to the onset of apoptosis.10 In addition, Drosophila mutants with a defective regulatory subunit of PP2A exhibit an increased number of lagging chromosomes and chromatin bridges in anaphase.14,15 Tap46 likely regulates the functions of PP2A family phosphatases during mitosis by direct association with their catalytic subunits, thereby modulating both the activity and specificity of the enzyme. Accumulating evidence reveals dynamic functions of PP2A during mitosis in both yeast and mammals: PP2A regulates kinetochore function, sister chromatid cohesion, spindle bipolarity and progression to anaphase.1517 Counteracting the activity of protein kinases, PP4 has also been implicated in both centrosome maturation and function during mitosis.18 Based on immunolabeling results, Tap46 was visualized as distinct spots around chromatin and mitotic spindles during mitosis in tobacco BY2 cells (Lee HS and Pai HS, unpublished results). Further studies will address the interacting partners and dynamic relocation of Tap46 during the cell cycle.Our results in this study demonstrated that Tap46 plays an important regulatory role in plant growth and metabolism; a major part of its function appears related to TOR signaling. However, we consistently observed certain phenotypic differences between Tap46-silenced and TOR-silenced Arabidopsis and N. benthamiana plants: an acute and rapid PCD occurred upon Tap46 silencing but not upon TOR silencing, despite a similar degree of gene silencing. Furthermore, we did not observe anaphase bridge formation in mitotic root-tip cells of ethanol-induced TOR RNAi Arabidopsis plants, while chromatin bridges were repeatedly observed in Tap46-silenced tobacco BY2 and Arabidopsis root-tip cells. Although an ancient Tap42/TOR paradigm observed in yeast appears to be conserved in plants, new TOR-independent functions of Tap46 might have evolved, the abrogation of which can cause massive PCD activation and anaphase bridge formation. Tap46 is a major regulator of cellular PP2A activity in plant cells by interacting with multiple phosphatase partners. Unraveling the molecular networks of Tap46 activity and interactions is essential for understanding its TOR-dependent and -independent functions in plants.  相似文献   

14.
15.
Migration of crawling cells (amoebae and some kinds of the tissue cells) is a process related to the dynamic reorganization of actomyosin cytoskeleton. That reorganization engages actin polymerization and de-polymerization, branching of actin network and interaction of myosin II with actin filaments. All those cytoskeleton changes lead to the cell progression, contraction and shifting of the uropod and the cell adhesion. Numerous external stimuli, which activate various surface receptors and signal transduction pathways, can promote migration. Rho family proteins play an important role in the regulation of actin cytoskeleton organization. The most known members of this family are Rho, Rac and Cdc42 proteins, present in all mammalian tissue cells. These proteins control three different stages of cell migration: progression of the frontal edge, adhesion which stabilizes the frontal area, and de-adhesion and shifting of the uropod. Cdc42 and Rac control cell polarization, lamellipodium formation and expansion, organization of focal complexes. Rho protein regulates contractile activity of actomyosin cytoskeleton outside the frontal area, and thus contraction and de-adhesion of the uropod.  相似文献   

16.
17.
Phosphorylation and activation of ribosomal S6 protein kinase is an important link in the regulation of cell size by the target of rapamycin (TOR) protein kinase. A combination of selective inhibition and RNA interference were used to test the roles of members of the PP2A subfamily of protein phosphatases in dephosphorylation of Drosophila S6 kinase (dS6K). Treatment of Drosophila Schneider 2 cells with calyculin A, a selective inhibitor of PP2A-like phosphatases, resulted in a 7-fold increase in the basal level of dS6K phosphorylation at the TOR phosphorylation site (Thr398) and blocked dephosphorylation following inactivation of TOR by amino acid starvation or rapamycin treatment. Knockdown of the PP2A catalytic subunit increased basal dS6K phosphorylation and inhibited dephosphorylation induced by amino acid withdrawal. In contrast, depletion of the catalytic subunits of the other two members of the subfamily did not enhance dS6K phosphorylation. Knockdown of PP4 caused a 20% decrease in dS6K phosphorylation and knockdown of PP6 had no effect. Knockdown of the Drosophila B56-2 subunit resulted in enhanced dephosphorylation of dS6K following removal of amino acids. In contrast, knockdown of the homologs of the other PP2A regulatory subunits had no effects. Knockdown of the Drosophila homolog of the PP2A/PP4/PP6 interaction protein alpha4/Tap42 did not affect S6K phosphorylation, but did induce apoptosis. These results indicate that PP2A, but not other members of this subfamily, is likely to be a major S6K phosphatase in intact cells and is consistent with an important role for this phosphatase in the TOR pathway.  相似文献   

18.
Rho GTPases regulate a wide variety of cellular processes, ranging from actin cytoskeleton remodeling to cell cycle progression and gene expression. Cell surface receptors act through a complex regulatory molecular network that includes guanine exchange factors (GEFs), GTPase activating proteins, and guanine dissociation inhibitors to achieve the coordinated activation and deactivation of Rho proteins, thereby controlling cell motility and ultimately cell fate. Here we found that a member of the RGL-containing family of Rho guanine exchange factors, PDZ RhoGEF, which, together with LARG and p115RhoGEF, links the G(12/13) family of heterotrimeric G proteins to Rho activation, binds through its C-terminal region to the serine-threonine kinase p21-activated kinase 4 (PAK4), an effector for Cdc42. This interaction results in the phosphorylation of PDZ RhoGEF and abolishes its ability to mediate the accumulation of Rho-GTP by Galpha13. Moreover, when overexpressed, active PAK4 was able to dramatically decrease Rho-GTP loading in vivo and the formation of actin stress fibers in response to serum or LPA stimulation. Together, these results provide evidence that PAK4 can negatively regulate the activation of Rho through a direct protein-protein interaction with G protein-linked Rho GEFs, thus providing a novel potential mechanism for cross-talk among Rho GTPases.  相似文献   

19.
20.
There is increasing evidence that the transforming DNA tumor virus simian virus 40 (SV40) is associated with human malignancies. SV40 small tumor antigen (small t) interacts with endogenous serine/threonine protein phosphatase 2A (PP2A) and is required for the transforming activity of SV40 in epithelial cells of the lung and kidney. Here, we show that expression of SV40 small t in epithelial MDCK cells induces acute morphological changes and multilayering. Significantly, it also causes severe defects in the biogenesis and barrier properties of tight junctions (TJs) but does not prevent formation of adherens junctions. Small t-induced TJ defects are associated with a loss of PP2A from areas of cell-cell contact; altered distribution and reduced amounts of the TJ proteins ZO-1, occludin, and claudin-1; and marked disorganization of the actin cytoskeleton. Small t-mediated F-actin rearrangements encompass increased Rac-induced membrane ruffling and lamellipodia, Cdc42-initiated filopodia, and loss of Rho-dependent stress fibers. Indeed, these F-actin changes coincide with elevated levels of Rac1 and Cdc42 and decreased amounts of RhoA in small t-expressing cells. Notably, these cellular effects of small t are dependent on its interaction with endogenous PP2A. Thus, our findings provide the first evidence that, in polarized epithelial cells, expression of small t alone is sufficient to induce deregulation of Rho GTPases, F-actin, and intercellular adhesion, through interaction with endogenous PP2A. Because defects in the actin cytoskeleton and TJ disruption have been linked to loss of cell polarity and tumor invasiveness, their deregulation by PP2A and small t likely contributes to the role of SV40 in epithelial cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号