首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
CD4(+) regulatory T cells have been shown to prevent intestinal inflammation; however, it is not known whether they act to prevent the priming of colitogenic T cells or actively control these cells as part of the memory T cell pool. In this study, we describe the presence of colitogenic Th1 cells within the CD4(+)CD45RB(low) population. These pathogenic cells enrich within the CD25(-) subset and are not recent thymic emigrants. CD4(+)CD45RB(low) cells from germfree mice were significantly reduced in their ability to transfer colitis to immune deficient recipients, suggesting the presence of commensal bacteria in the donor mice drives colitogenic T cells into the Ag-experienced/memory T cell pool. This potentially pathogenic population of Ag-experienced T cells is subject to T cell-mediated regulation in vivo by both CD4(+)CD25(+) and CD4(+)CD25(-) cells in an IL-10-dependent manner. Furthermore, administration of an anti-IL-10R mAb to unmanipulated adult mice was sufficient to induce the development of colitis. Taken together, these data indicate that colitogenic Th1 cells enter into the Ag-experienced pool in normal mice, but that their function is controlled by regulatory T cells and IL-10. Interestingly, IL-10 was not absolutely required for CD4(+)CD25(+) T cell-mediated inhibition of colitis induced by transfer of naive CD4(+)CD45RB(high) cells, suggesting a differential requirement for IL-10 in the regulation of naive and Ag-experienced T cells.  相似文献   

2.
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.  相似文献   

3.
FTY720, a sphingosine-derived immunomodulator, causes immunosuppression via enhancement of lymphocyte sequestration into secondary lymphoid organs, thereby preventing their antigen-activated T cell egress to sites of inflammation. FTY720 is highly effective in inhibiting autoimmunity in various animal models. However, there is little known about how FTY720 controls the migration property of memory T cells. Here, we demonstrated that FTY720 prevents the development of colitis induced by the adoptive transfer of lamina propria (LP) colitogenic effector memory CD4+ T cells (TEM cells; CD45RB(low)CD44(high)CD62L-) into severe combined immunodeficiency (SCID) mice and suppresses interferon-gamma, interleukin-2, and tumor necrosis factor-alpha production by LP CD4+ T cells. The numbers of spleen, peripheral blood, mesenteric lymph node, and LP CD4+ T cells in FTY720-treated mice were significantly reduced compared with those in control mice. Notably, LP CD4+ TEM cells as well as splenic CD4+CD45RBhigh T cells expressed several spingosine-1-phosphate receptors that are targets for FTY720. Furthermore, FTY720 also prevented the development of colitis induced by the adoptive transfer of splenic CD4+CD45RBhigh T cells into SCID mice. Collectively, the present data indicate that FTY720 treatment may offer the potential not only to prevent the onset of disease but also to treat memory T cell-mediated autoimmune diseases including inflammatory bowel diseases.  相似文献   

4.
5.
We have previously demonstrated that mucosal CD4(+) T cells expressing high levels of IL-7 receptor (IL-7R(high)) are pathogenic cells responsible for chronic colitis. Here we investigate whether IL-7 is directly involved in the expansion of IL-7R(high) memory CD4(+) mucosal T cells and the exacerbation of colitis. We first showed that CD4(+) lamina propria lymphocytes (LPLs) from wild-type, T cell receptor-alpha-deficient (TCR-alpha(-/-)), and recombinase-activating gene (RAG)-2(-/-)-transferred mice with or without colitis showed phenotypes of memory cells, but only CD4(+) LPLs from colitic mice showed IL-7R(high). In vitro stimulation by IL-7, but not by IL-15 and thymic stromal lymphopoietin, enhanced significant proliferative responses and survival of colitic CD4(+), but not normal CD4(+) LPLs. Importantly, in vivo administration of IL-7 mice accelerated the expansion of IL-7R(high) memory CD4(+) LPLs and thereby exacerbated chronic colitis in RAG-2(-/-) mice transferred with CD4(+) LPLs from colitic TCR-alpha(-/-) mice. Conversely, the administration of anti-IL-7R monoclonal antibody significantly inhibited the development of TCR-alpha(-/-) colitis with decreased expansion of CD4(+) LPLs. Collectively, the present data indicate that IL-7 is essential for the expansion of pathogenic memory CD4(+) T cells under pathological conditions. Therefore, therapeutic approaches targeting the IL-7R pathway may be feasible in the treatment of human inflammatory bowel disease.  相似文献   

6.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

7.
8.
Natural CD25(+)CD4(+) regulatory T cells (Treg) are essential for self-tolerance and for the control of T cell-mediated immune pathologies. However, the identification of Tregs in an ongoing immune response or in inflamed tissues remains elusive. Our experiments indicate that TIRC7, T cell immune response cDNA 7, a novel membrane molecule involved in the regulation of T lymphocyte activation, identifies two Treg subsets (CD25(low)TIRC7(+) and CD25(high)TIRC7(-)) that are characterized by the expression of Foxp3 and a suppressive activity in vitro and in vivo. We also showed that the CD25(low)TIRC7(+) subset represents IL-10-secreting Tregs in steady state, which is accumulated intratumorally in a tumor-bearing mice model. Blockade of the effect of IL-10 reversed the suppression imposed by the CD25(low)TIRC7(+) subset. Interestingly, these IL-10-secreting cells derived from the CD25(high)TIRC7(-) subset, both in vitro and in vivo, in response to tumoral Ags. Our present results strongly support the notion that, in the pool of natural Tregs, some cells can recognize foreign Ags and that this recognition is an essential step in their expansion and suppressive activity in vivo.  相似文献   

9.
Although IL-7 has recently emerged as a key cytokine involved in controlling the homeostatic turnover and the survival of peripheral resting memory CD4(+) T cells, its potential to be sustained pathogenic CD4(+) T cells in chronic immune diseases, such as inflammatory bowel diseases, still remains unclear. In this study, we demonstrate that IL-7 is essential for the development and the persistence of chronic colitis induced by adoptive transfer of normal CD4(+)CD45RB(high) T cells or colitogenic lamina propria (LP) CD4(+) memory T cells into immunodeficient IL-7(+/+) x RAG-1(-/-) and IL-7(-/-) x RAG-1(-/-) mice. Although IL-7(+/+) x RAG-1(-/-) recipients transferred with CD4(+)CD45RB(high) splenocytes developed massive inflammation of the large intestinal mucosa concurrent with massive expansion of Th1 cells, IL-7(-/-) x RAG-1(-/-) recipients did not. Furthermore, IL-7(-/-) x RAG-1(-/-), but not IL-7(+/+) x RAG-1(-/-), mice transferred with LP CD4(+)CD44(high)CD62L(-)IL-7Ralpha(high) effector-memory T cells (T(EM)) isolated from colitic CD4(+)CD45RB(high)-transferred mice did not develop colitis. Although rapid proliferation of transferred colitogenic LP CD4(+) T(EM) cells was observed in the in IL-7(-/-) x RAG-1(-/-) mice to a similar extent of those in IL-7(+/+) x RAG-1(-/-) mice, Bcl-2 expression was significantly down-modulated in the transferred CD4(+) T cells in IL-7(-/-) x RAG-1(-/-) mice compared with those in IL-7(+/+) x RAG-1(-/-) mice. Taken together, IL-7 is essential for the development and the persistence of chronic colitis as a critical survival factor for colitogenic CD4(+) T(EM) cells, suggesting that therapeutic approaches targeting IL-7/IL-7R signaling pathway may be feasible in the treatment of inflammatory bowel diseases.  相似文献   

10.
The frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.B-17 SCID/bg mice and mediate the destruction of human endothelial cells (EC) in vascularized human skin grafts allogeneic to the T cell donor. In contrast, CD4+ T(CM) (CD45RO+ CCR7+ CD62L+) are inefficiently transferred and do not mediate EC injury. In vitro, CD4+ T(EM) secrete more IFN-gamma within 48 h in response to allogeneic ECs than do T(CM). In contrast, T(EM) and T(CM) secrete comparable amounts of IFN-gamma in response to allogeneic monocytes (Mo). In the same cultures, both T(EM) and T(CM) produce IL-2 and proliferate in response to IFN-gamma-treated allogeneic human EC or Mo, but T(CM) respond more vigorously in both assays. Blockade of LFA-3 strongly inhibits both IL-2 and IFN-gamma secretion by CD4+ T(EM) cultured with allogeneic EC but only minimally inhibits responses to allogeneic Mo. Blockade of CD80 and CD86 strongly inhibits IL-2 but not IFN-gamma production by in response to allogeneic EC or Mo. Transduction of EC to express B7-2 enhances allogeneic T(EM) production of IL-2 but not IFN-gamma. We conclude that human CD4+ T(EM) directly recognize and respond to allogeneic EC in vitro by secreting IFN-gamma and that this response depends on CD2 but not CD28. Consistent with EC activation of effector functions, human CD4+ T(EM) can mediate allogeneic EC injury in vivo.  相似文献   

11.
T cell-to-T cell Ag presentation is increasingly attracting attention. In this study, we demonstrated that active CD4+ T (aT) cells with uptake of OVA-pulsed dendritic cell-derived exosome (EXO(OVA)) express exosomal peptide/MHC class I and costimulatory molecules. These EXO(OVA)-uptaken (targeted) CD4+ aT cells can stimulate CD8+ T cell proliferation and differentiation into central memory CD8+ CTLs and induce more efficient in vivo antitumor immunity and long-term CD8+ T cell memory responses than OVA-pulsed dendritic cells. They can also counteract CD4+25+ regulatory T cell-mediated suppression of in vitro CD8+ T cell proliferation and in vivo CD8+ CTL responses and antitumor immunity. We further elucidate that the EXO(OVA)-uptaken (targeted)CD4+ aT cell's stimulatory effect is mediated via its IL-2 secretion and acquired exosomal CD80 costimulation and is specifically delivered to CD8+ T cells in vivo via acquired exosomal peptide/MHC class I complexes. Therefore, EXO-targeted active CD4+ T cell vaccine may represent a novel and highly effective vaccine strategy for inducing immune responses against not only tumors, but also other infectious diseases.  相似文献   

12.
TLRs that mediate the recognition of pathogen-associated molecular patterns are widely expressed on/in cells of the innate immune system. However, recent findings demonstrate that certain TLRs are also expressed in conventional TCRalphabeta(+) T cells that are critically involved in the acquired immune system, suggesting that TLR ligands can directly modulate T cell function in addition to various innate immune cells. In this study, we report that in a murine model of chronic colitis induced in RAG-2(-/-) mice by adoptive transfer of CD4(+)CD45RB(high) T cells, both CD4(+)CD45RB(high) donor cells and the expanding colitogenic lamina propria CD4(+)CD44(high) memory cells expresses a wide variety of TLRs along with MyD88, a key adaptor molecule required for signal transduction through TLRs. Although RAG-2(-/-) mice transferred with MyD88(-/-)CD4(+)CD45RB(high) cells developed colitis, the severity was reduced with the delayed kinetics of clinical course, and the expansion of colitogenic CD4(+) T cells was significantly impaired as compared with control mice transferred with MyD88(+/+)CD4(+)CD45RB(high) cells. When RAG-2(-/-) mice were transferred with the same number of MyD88(+/+) (Ly5.1(+)) and MyD88(-/-) (Ly5.2(+)) CD4(+)CD45RB(high) cells, MyD88(-/-)CD4(+) T cells showed significantly lower proliferative responses assessed by in vivo CFSE division assay, and also lower expression of antiapoptotic Bcl-2/Bcl-x(L) molecules and less production of IFN-gamma and IL-17, compared with the paired MyD88(+/+)CD4(+) T cells. Collectively, the MyD88-dependent pathway that controls TLR signaling in T cells may directly promote the proliferation and survival of colitogenic CD4(+) T cells to sustain chronic colitis.  相似文献   

13.
Regulatory T cells (T(R)) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor-reactive effector T cells. In this study, we demonstrate that follicular lymphoma (FL)-infiltrating CD8+ and CD4+ T cells are hyporesponsive to CD3/CD28 costimulation. We further identify a population of FL-infiltrating CD4+CD25+GITR+ T(R) that are significantly overrepresented within FL nodes (FLN) compared with that seen in normal (nonmalignant, nonlymphoid hyperplastic) or reactive (nonmalignant, lymphoid hyperplastic) nodes. These T(R) actively suppress both the proliferation of autologous nodal CD8+CD25- and CD4+CD25- T cells, as well as cytokine production (IFN-gamma, TNF-alpha and IL-2), after CD3/CD28 costimulation. Removal of these cells in vitro by CD25+ magnetic bead depletion restores both the proliferation and cytokine production of the remaining T cells, demonstrating that FLN T cell hyporesponsiveness is reversible. In addition to suppressing autologous nodal T cells, these T(R) are also capable of suppressing the proliferation of allogeneic CD8+CD25- and CD4+CD25- T cells from normal lymph nodes as well as normal donor PBL, regardless of very robust stimulation of the target cells with plate-bound anti-CD3 and anti-CD28 Abs. The allogeneic suppression is not reciprocal, as equivalent numbers of CD25+FOXP3+ cells derived from either normal lymph nodes or PBL are not capable of suppressing allogeneic CD8+CD25- and CD4+CD25- T cells, suggesting that FLN T(R) are more suppressive than those derived from nonmalignant sources. Lastly, we demonstrate that inhibition of TGF-beta signaling partially restores FLN T cell proliferation suggesting a mechanistic role for TGF-beta in FLN T(R)-mediated suppression.  相似文献   

14.
CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells   总被引:10,自引:0,他引:10  
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis.  相似文献   

15.
CD4+CD25+ regulatory T cells can prevent and resolve intestinal inflammation in the murine T cell transfer model of colitis. Using Foxp3 as a marker of regulatory T cell activity, we now provide a comprehensive analysis of the in vivo distribution of Foxp3+CD4+CD25+ cells in wild-type mice, and during cure of experimental colitis. In both cases, Foxp3+CD4+CD25+ cells were found to accumulate in the colon and secondary lymphoid organs. Importantly, Foxp3+ cells were present at increased density in colon samples from patients with ulcerative colitis or Crohn's disease, suggesting similarities in the behavior of murine and human regulatory cells under inflammatory conditions. Cure of murine colitis was dependent on the presence of IL-10, and IL-10-producing CD4+CD25+ T cells were enriched within the colon during cure of colitis and also under steady state conditions. Our data indicate that although CD4+CD25+ T cells expressing Foxp3 are present within both lymphoid organs and the colon, subsets of IL-10-producing CD4+CD25+ T cells are present mainly within the intestinal lamina propria suggesting compartmentalization of the regulatory T cell response at effector sites.  相似文献   

16.
The function of Ag-specific central (T(CM)) and effector (T(EM)) memory CD4+ T lymphocytes remains poorly characterized in vivo in humans. Using CD154 as a marker of Ag-specific CD4+T cells, we studied the differentiation of memory subsets following anti-hepatitis B immunization. Hepatitis B surface Ag (HBs)-specific memory CD4+T cells were heterogeneous and included T(CM) (CCR7+CD27+) and T(EM) (CCR7(-)CD27(+/-)). HBs-specific T(CM) and T(EM) shared the capacity to produce multiple cytokines, including IL-2 and IFN-gamma. Several years postimmunization, approximately 10% of HBs-specific memory CD4+ T cells were in cycle (Ki67+) and the proliferating cells were CCR7+. These results suggest that the model of functional specialization of T(CM) and T(EM) cannot be applied to protein vaccine Ags and support the concept that T(CM) are capable of self-renewal and contribute to maintain the pool of memory cells.  相似文献   

17.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

18.
The thymus-derived CD4(+)CD25(+) T cells belong to a subset of regulatory T cells potentially capable of suppressing the proliferation of pathogenic effector T cells. Intriguingly, these suppressor cells are themselves anergic, proliferating poorly to mitogenic stimulation in culture. In this study, we find that the 4-1BB costimulator receptor, best known for promoting the proliferation and survival of CD8(+) T cells, also induces the proliferation of the CD4(+)CD25(+) regulatory T cells both in culture and in vivo. The proliferating CD4(+)CD25(+) T cells produce no detectable IL-2, suggesting that 4-1BB costimulation of these cells does not involve IL-2 production. The 4-1BB-expanded CD4(+)CD25(+) T cells are functional, as they remain suppressive to other T cells in coculture. These results support the notion that the peripheral expansion of the CD4(+)CD25(+) T cells is controlled in part by costimulation.  相似文献   

19.
IL-2 contributes to the production, function, and homeostasis of CD4+CD25+ T(reg) cells. However, it remains uncertain whether IL-2 is essential for the development of T(reg) cells in the thymus, their homeostasis in the periphery, or both. The present study was undertaken to investigate the contribution of IL-2 during thymic T(reg) cell development and its maintenance in peripheral immune tissue. Relying on genetic mouse models where IL-2R signaling was either completely blocked or selectively inhibited in peripheral CD4+CD25+ T(reg) cells, we show that the IL-2/IL-2R interaction is active in the thymus at the earliest stage of the development of T(reg) cells to promote their expansion and to up-regulate Foxp3 and CD25 to normal levels. Furthermore, CD4+CD25+Foxp3+ T(reg) cells with impaired IL-2-induced signaling persist in the periphery and control autoimmunity without constant thymic output. These peripheral T(reg) cells with poor responsiveness to IL-2 exhibited slower growth and extended survival in vivo, somewhat lower suppressive activity, and poor IL-2-dependent survival in vitro. Mixed thymic and bone marrow chimeric mice showed that wild-type-derived T(reg) cells were substantially more effective in populating peripheral immune tissue than T(reg) cells with impaired IL-2 signaling. Collectively, these data support the notion that normally IL-2 is a dominant mechanism controlling the number of thymic and peripheral T(reg) cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号