首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Atlantic Forest of South America is one of the most degraded tropical forests and the cultivation of sugarcane is considered one of the main causes. In humid forests termites stand out with regard to their abundance and functional importance. The present study aimed to compare termite assemblages of fragments of the Atlantic Forest with that of the sugarcane matrices that surround them. Collections were performed in two sugarcane plantations in Northeast Brazil. In each plantation a fragment of Atlantic Forest and an adjacent sugarcane field were sampled using a standardized termite sampling protocol. A total of 39 species and 302 encounters were recorded. Species richness, relative abundance and composition differed significantly between forests and the matrices, with the presence of exclusive species in each environment—25 in the forests and seven in the matrices. Soil feeding species of the subfamily Apicotermitinae and species of open areas were found in the matrices. There was a marked difference between the assemblages of the matrices, possibly due to soil characteristics. The majority of the species found in the matrices do not cause damage to the crop, but instead act in the processes of soil decomposition and formation, thereby contributing to increased productivity.  相似文献   

2.
Disturbance, particularly agricultural expansion is one of the major threats to the biodiversity and ecological functions of tropical and sub-tropical ecosystems. In this regard, we examined changes in the species richness, abundance, and diversity of termites across different disturbance treatments in a sub-tropical semi-arid savanna in south eastern Zimbabwe. Nine transects (100?×?2 m) representing three habitat disturbance treatments (primary woodland; grazing area; agricultural field) were sampled for termites using a rapid biodiversity assessment protocol. Termites were more abundant and species-rich in primary woodland and grazing area than in the agricultural field. Twelve termite species from three sub-families were present, with Microtermes sp. constituting 35% of the identified termite species. Termite feeding group structure differed significantly among land-use types, and of all termites present, wood-feeding termites were the most abundant while soil-feeders were rare in the agricultural field. In conclusion the observed pattern in termite species richness and relative abundance indicates that termites are very resilient to natural disturbance and might actually benefit from some natural disturbances like they did in the grazing area of this study, but they are not resilient to extreme anthropogenic disturbance. Although there was no notable difference in termite species richness and relative abundance between agricultural field and primary woodland, the pattern observed across the three sites may be potential support for the IDH suggesting that intermediate levels of physical disturbance intensity influence the structure and functioning of termite assemblages in semi-arid savanna.  相似文献   

3.
Through their role as ‘ecosystem engineers’, termites provide a range of ecosystem services including decomposition, and carbon and nitrogen cycling. Although termite diversity levels differ between regions as a result of variation in regional species pool size, in general, termite diversity is thought to decline with elevation. This study (1) investigated how termite species density, abundance, functional group diversity and termite attack on dead wood vary with altitude along an Amazon–Andes altitudinal gradient in Peru; (2) identified likely environmental causes of this pattern; and (3) explored the implications of termite presence for ecosystem functioning (notably for decomposition). Termites were sampled with a standardized 100 × 2 m straight‐belt transect at five undisturbed forest sites along a gradient 190 to 3025 m, as were environmental variables and termite and fungus attack on dead wood. Termite diversity was similar to that found at comparable sites in South America, and there was little turnover of assemblage composition with elevation suggesting that montane specialists are not present. Termite diversity declined with increased elevation, though the upper distribution limit for termites was at a lower elevation than anticipated. We suggest that key drivers of this elevation pattern are reduced temperature with altitude and mid‐elevation peaks in soil water content. Also, attack on dead wood diminished with decreasing termite indirect absolute abundance, while the depth of the soil humic layer increased. We hypothesize that termite abundance is a major accelerant of decomposition rates (and associated mineralization) in Amazonian forests.  相似文献   

4.
Termites are ecosystem engineers that play an important role in the biotransformation and re‐distribution of nutrients in soil. The dry forests are endemic repositories, but at same time, they are most threatened by extensive livestock and crop farming, fires, and climate change. In Colombia, the best‐protected dry forests are located in the north. The termite fauna of dry forests are poorly known. The aim was to identify the termite species occurring in tropical dry forests of the Colombian Caribbean coast in relation to diet and precipitation, temperature, elevation, and soil properties. A total of 32 species in 1,103 occurrences were found. Termitidae accounted for 78% of the species richness with the Anoplotermes‐group, Microcerotermes, and Nasutitermes being the dominant genera. Differences in species composition and abundance were found across sites. These differences may be linked to anthropogenic disturbance and polygyny and polydomy. Strikingly, our highest elevation site (334 m) had the highest species richness much higher than the two lower elevation sites. This implies an inversion of the common elevation‐diversity gradient, also found for termites which can be explained by increasing precipitation with elevation in the dry forest. An analysis of termite species richness at the global scale confirms that termite species richness correlates positively with rainfall. Hence, rainfall seems to positively affect termite diversity. In line, the studied Colombian tropical dry forests had low diversity compared to rain forests. A decline of species‐rich soil‐feeding termites with increasing aridity may explain why the highest termite diversity occurs in humid tropical rain forests. Abstract in Spanish is available with online material.  相似文献   

5.
The composition of termite assemblages was analyzed in three caatinga sites of the Esta??o Ecológica do Seridó, located in the municipality of Serra Negra do Norte, in the state of Rio Grande do Norte, Brazil. These sites have been subjected to selective logging, and cleared for pasture and farming. A standardized sampling protocol for termite assemblages (30h/person/site) was conducted between September 2007 and February 2009. At each site we measured environmental variables, such as soil pH and organic matter, necromass stock, vegetation height, stem diameter at ankle height (DAH) and the largest and the smallest crown width. Ten species of termites, belonging to eight genera and three families, were found at the three experimental sites. Four feeding groups were sampled: wood-feeders, soil-feeders, wood-soil interface feeders and leaf-feeders. The wood-feeders were dominant in number of species and number of encounters at all sites. In general, the sites were not significantly different in relation to the environmental variables measured. The same pattern was observed for termite assemblages, where no significant differences in species richness, relative abundance and taxonomic and functional composition were observed between the three sites. The agreement between composition of assemblages and environmental variables reinforces the potential of termites as biological indicators of habitat quality.  相似文献   

6.
Odonate diversity in East Java was surveyed, and samplings were made during 2 years in ten sites along an altitudinal gradient. The characteristics of odonate assemblages in East Java were analyzed regarding of the number of individuals, the number of species, and Shannon's diversity index. The differences in abundance, species richness, and diversity between study sites were analyzed by an independent t‐test. There were 3270 individuals of Odonata belong to 30 species, 7 families and 2 suborders identified from all study sites. The abundance, species richness and diversity of Odonata varied between study sites. The greatest abundance of Odonata was found in Malang Coban Talun (MCT) (148.8 ± 9.5), while the lowest was in South Beach Forest (SBF) (14.4 ± 3.6). The highest species richness and diversity was found in Malang Paddy Field (MPF) (richness =14.4 ± 0.8 and H′ = 2.4 ± 0.1), while the lowest was found in South Coastal Area (SCA) (richness =2.8 ± 0.1 and H′ = 0.4 ± 0.1). A significant positive correlation was detected between the elevation and overall odonate abundance (P < 0.05), while there was not significant correlation between that and odonate species richness and diversity.  相似文献   

7.
Predation is a key determinant of prey community structure, but few studies have measured the effect of multiple predators on a highly diverse prey community. In this study, we asked whether the abundance, species richness, and species composition of a species‐rich assemblage of termites in an Amazonian rain forest is more strongly associated with the density of predatory ants or with measures of vegetation, and soil texture and chemistry. We sampled termite assemblages with standardized hand‐collecting in 30 transects arranged in a 5 km × 6 km grid in a terra firme Amazonian rain forest. For each transect, we also measured vegetation structure, soil texture, and soil phosphorus, and estimated the density of predatory ants from baits, pitfall traps, and Winkler samples. Seventy‐nine termite species were recorded, and the total density of predatory ants was the strongest single predictor of local termite abundance (r = ?0.66) and termite species richness (r = ?0.44). In contrast, termite abundance and species richness were not strongly correlated with edaphic conditions (¦r¦ < 0.01), or with the density of non‐predatory ants (rabund = ?0.27; rs = ?0.06). Termite species composition was correlated with soil phosphorus content (r = 0.79), clay content (r = ?0.75), and tree density (r = ?0.42). Assemblage patterns were consistent with the hypothesis that ants collectively behaved as generalist predators, reducing total termite abundance, and species richness. There was no evidence that ants behaved as keystone predators, or that any single termite species benefited from the reduction in the abundance of potential competitors.  相似文献   

8.
Termites are major decomposers in tropical regions and play an important role in soil processes. This study investigated the termite assemblage structure across a sequence of differing land-use systems. With a standardized method, data were collected on termites from the following habitats: semi-deciduous forest, teak plantation, cocoa plantation, Jatropha plantation, food crop field and 4-years old fallow. Termite species richness declined from the semi-deciduous forest to 4-years old fallow through teak plantation, food crop field, cocoa plantation and Jatropha plantation. The relative abundance of fungus-growers was the highest in all land-use types while that of soil-feeders steeply declined in all man-modified sites. The wood-feeding species showed clear responses to disturbance, with low abundances in monospecific- and modified sites without high trees. Comparisons with other studies suggest that changes in the termite assemblage structure result from forest conversion to agricultural systems. To help mitigate the loss of termites when forests are disturbed or cleared, we recommend to: (1) promote the association of cropping and silvicultural systems that reduces changes in microclimate and maintains the original termite assemblage with the associated ecosystem services; (2) leave dead wood on the ground after forest disturbance to accelerate the recovery of the termite assemblage; and (3) increase forest and silvicultural patch size and reduce length of forest edges to sustain the survival of forest-dependent species.  相似文献   

9.
The intensive agricultural practices used in coffee plantations have profound impacts on invertebrate biodiversity. We surveyed termite diversity in the central highlands of Vietnam and evaluated it relative to the in situ ecological conditions of the coffee farms. Two survey sites were established at farms that were in place for 1 month and 1, 3, 5, and 25 years at the time of sampling. In addition, two models were tested: the diversity–resource relationship and the diversity–disturbance relationship. Our results demonstrated that the loss of termite diversity due to land perturbation in newly cultivated coffee farms may be as high as 86% compared with the nearest forested site. Only two feeding groups of termite (Group II and Group III) were present in the study sites. Termite composition of young and old farms was similar, but they only shared 48% similarity and differed significantly from the composition of the 1, 3, and 5 year old coffee farms. Understory vegetation cover and moisture content were positively associated with the occurrence of Group II and III termites but negatively associated with soil bulk density. Termite species richness did not increase linearly with the increased biomass production (plant litter) that is characteristic of old coffee farms. In contrast, termite species richness and occurrence were related to the intensity of farm management. Farms subjected to an intermediate level of management intensity due to annual crop cultivation recorded the highest diversity. Our study highlights the importance of annual crop cultivation to enhance termite diversity.  相似文献   

10.
Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.  相似文献   

11.
Abstract Termites are major decomposers in tropical ecosystems. To characterize their assemblages in terms of taxonomical and functional composition, Jones and Eggleton (2000, Journal of Applied Ecology 37, 191–203) recently proposed a standardized sampling protocol based on belt transects of 100 m × 2 m. We evaluated the representativeness of samples obtained by this protocol, and its suitability to calculate diversity statistics, by replicating it in an area of naturally fragmented subtropical forest. We sampled six 100 m transects in separate small forest islets, and one transect extended to 500 m in a large islet, recording presence/absence data (occurrences) of termite species in successive quadrats of 5 m × 2 m. In the large islet, strips of 100 m within the 500 m transect produced extremely variable species richness figures. This variability was primarily due to heterogeneity in the spatial distribution of soil‐dwelling termites. Combining non‐contiguous quadrats allowed us to span a broader diversity of microhabitats for an equal effort, providing less variable results and faster species accumulation. Individual transects of 100 m in small forest islets yielded too few samples to allow reliable estimations of total species richness, although these transects when pooled constituted a useful data set for comparison with other sites. In the focal habitat, a single 100 m transect appeared therefore inadequate to allow a reliable characterization of the termite assemblage, even at the level of a single forest islet. To improve the rate of species accumulation and to obtain diversity statistics allowing intersite comparisons, we suggest the use of smaller, non‐contiguous quadrats, and that sampling be continued until stable diversity estimates are obtained. In the habitat studied, such an alternative protocol could be adequately combined with a standardized protocol for collecting ground‐dwelling ants.  相似文献   

12.
This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (<1-5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m(2) quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(-2). In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2) quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(-2). Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult.  相似文献   

13.
The Brazilian Atlantic Forest is one of the most diverse environments, but it is also one of the most threatened areas in terms of loss of biodiversity and ecosystem services. Assessment of changes in the community structure during the recovery of forests can be performed using indicator organisms. Dung beetles perform several ecological functions and show high sensitivity to natural and anthropogenic environmental changes. This study aimed to investigate the effect of regeneration time of Atlantic Forest sites on structure of Scarabaeinae assemblages. We sampled dung beetles using ten baited pitfall traps per site, in six sites grouped into three classes of forest regeneration time (~30, ~60 and >80 years) in the southern Brazilian Atlantic Forest, during January 2015. A total of 520 individuals belonging to 16 species and nine genera of dung beetles were sampled. Rarefied species richness did not differ between sites with different regeneration times. Average species richness and abundance of Scarabaeinae was smaller in areas of shorter recovery time. True alpha diversity was higher in areas with intermediate recovery whereas Shannon diversity showed higher values in areas of shorter recovery. Approximately 29?% of the variation in abundance data of Scarabaeinae was explained by environmental variables, with one-third of this variation explained also by spatial predictors. External factors such as landscape management and farming practices in the surroundings must be taken into consideration in management plans and the management of natural areas for the recovery of biodiversity in the Atlantic Forest. These external factors can considerably affect the structure of communities and lead to scenarios of greater diversity in intermediate regeneration sites due to the heterogeneity of the landscape.  相似文献   

14.
The effects of selective logging on termite assemblages that build conspicuous nests were studied in two areas of semideciduous Atlantic Forest, located in the Reserva Biológica Guaribas, Northeastern Brazil. The two study areas went through selective logging until 1985 (A17) and 1972 (A30). In 2002, termite nests were studied in two plots of 1 ha (100 x 100 m), being one plot in each area. The nests were placed in each plot and the species were categorized in feeding groups. The structure of the study assemblages was different between the two areas. Diversity and richness of builder species were greater in the A30 area. Species that consume humus were more sensitive to selective logging. Nest abundance of humus feeding species was significantly higher in the A30 area, whereas nests of wood feeding species were significantly more abundant in the area A17. Nest ratio between humus and wood feeding species was 1:3 in the A30 area and 1:12 in the A17 area. Nests with greater volume were observed in the area A30, whereas abundance of inactive nests was significantly higher in A17. The time for habitat resilience after the selective logging influenced patterns of assemblage structure of termites in similar ways as described in other studies in tropical forests.  相似文献   

15.
Both large herbivores and termites are key functional groups in savanna ecosystems, and in many savanna areas, large termite mounds (termitaria) are associated with distinct woody clusters. Studies on the effect of large mammals on tree regeneration are few, and the results are conflicting. Large herbivores have been found to be important seedling predators in some areas, but facilitate tree regeneration by outcompeting small mammals and reducing grass cover in other areas. Through the use of the experimental fencing of termite mounds and adjacent savanna areas in this study, we investigated how termites and large herbivores influence tree regeneration. Termite mounds had a higher number of seedlings, more species richness, more alpha diversity (OD) and lower evenness (E) than savanna plots. Large herbivores did not significantly affect overall seedling density, species richness, OD or E. Beta diversity was higher in savanna areas than on termitaria, and beta diversity decreased in savanna areas when herbivores were excluded. Herbivore exclusion increased the density of the 12 (40 %) most common seedling species, representing 79 % of all seedlings, and fenced plots had relatively taller seedlings than open plots. Thus, termites were the main determinants of tree regeneration in our study area, but large mammals regulated the most common species. Although our study confirms previous work suggesting that large herbivores affect tree regeneration, we found that termites were an even more important determinant. Termite impacts on tree regeneration deserve increased attention by savanna ecologists.  相似文献   

16.
This study examined the latitudinal gradient of species diversity of rocky intertidal sessile assemblages on the slopes of rocks along the Northwestern Pacific coast of Japan, located between 31°N and 43°N, by explicitly incorporating an hierarchical spatial scale into the monitoring design. The specific questions were to examine: (1) whether there is a latitudinal gradient of regional diversity, (2) how spatial components of the regional diversity (local diversity and turnover diversity) vary with latitude depending on spatial scale, and (3) whether the latitudinal gradient differs between different measures of species diversity, i.e. species richness and Simpsons diversity index. We measured coverage and the presence or absence of all sessile organisms in a total of 150 census plots established at five shores in each of six regions. The results showed that there were clear latitudinal gradients in regional species richness and in species turnover among shores. However, these patterns were not reflected in smaller-scale local species richness. For Simpsons diversity index, there was no evidence of latitudinal clines either in regional diversity or in spatial components. These results suggest that relative abundance of common species does not vary along latitude, while the number of rare species increases with decreasing latitude.
An erratum to this article can be found at  相似文献   

17.
Surface primary productivity and carbon flux in the Arctic Seas are higher along the warm Spitsbergen Water Current than along the ice-infested East Greenland Current. These contrasting oceanographic conditions are reflected in the deep-sea environment and may shape nematode assemblages. However, the paucity of samples in the Arctic deep seas precludes any regional scale assessment. In the present study, nematode assemblages were investigated in relation to a range of environmental variables along the 2,000 m isobath between latitudes 72°N and 79°N for both East and Western margins of the northern North Atlantic. Results showed that both margins had distinct environmental characteristics, with respect to chloroplastic pigments, sediment water content, sediment-bound organic matter, phospholipids and particulate proteins. Nematode assemblages varied according to these environmental changes. Along the more oligotrophic western margin, chloroplastic pigments increased towards the North, while the other environmental variables, nematode abundances and species richness decreased. In contrast, along the eastern margin, we observed higher quantities of organic matter and particulate protein, which supported higher abundance and species richness. Nematode assemblages along both margins varied according to food availability with species composition more variable in areas with lower amounts. Seventy percent of the species occurred in both margins indicating a low turnover of species. The present results support the hypothesis of a positive latitudinal gradient across the North Atlantic and further suggest that contemporary climate and recent ecological processes may predict nematode diversity patterns at larger scales.  相似文献   

18.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

19.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

20.
Large herbivores and termites are important functional groups in African savannahs. Both groups affect small mammals, which are also important determinants for savannah structure and function. Because vegetation on Macrotermes mounds are preferentially grazed by large herbivores, and mounds represent resource-rich distinct habitat patches for small mammals in relatively resource-poor savannahs, termite mounds are ideal sites for studies of how grazing by large mammals and productivity affect communities of small mammals. We conducted an experiment in Lake Mburo National Park, Uganda, with four treatments: large vegetated Macrotermes mounds (with and without large herbivores) and adjacent savannah areas (with and without large herbivores). We replicated the treatment blocks nine times and trapped small mammals regularly over a period of almost 2 years. Small mammal species assemblages differed considerably between mounds and savannah areas. Grazing had a substantial effect on small mammal species assemblages in the resource-poor savannah, but not in the relatively resource-rich termitaria. Small mammal species abundance, biomass, and richness were higher on termite mounds than adjacent savannah areas. Excluding large herbivores caused a major increase in species abundance, biomass, and richness both on savannah and termitaria. Herbaceous plant species evenness was an important determinant of the small mammal community. Small mammal biomass increased with high plant dominance, indicating that a few dominant plant species are important for biomass production of small mammals. Small mammal diversity was not related to any of the treatments, but increased with plant species evenness as well as richness. Fencing increased species dominance in the small mammal community on both savannah and termitaria, probably because competitive patterns shift from inter-guild (that is, between large and small mammals) to intra-guild (that is, between small mammals) when large mammals are excluded. The study highlights the complex interactions among large herbivores, termites, herbaceous plants, and small mammals in African savannahs. When studying the structure and function of small mammal communities it is therefore important to consider several coexisting functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号