首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syzygiella rubricaulis is a dioecious leafy liverwort disjunctly distributed and restricted to high‐altitude mountains in the Neotropics and the Azores. This study is part of a larger project examining the phylogeography of S. rubricaulis in the Neotropics, and our main goals were to understand its reproductive biology, where sex expression occurs, if vegetative propagules are frequently found, how the sexes are distributed in populations, how frequently sporophytes are formed and what environmental conditions influence sexual expression. S. rubricaulis patches are mostly female, but all patches also contain non sex‐expressing shoots. Out of 42 patches examined, 29 (69%) were sex‐expressing: 25 were unisexual (21 female and four male) and four of mixed sex (two male‐biased and two unbiased). At shoot level, out of 4200 shoots 18% were female and 7% male; among sex‐expressing shoots, 73% were female, representing a sex ratio of 0.8 (female‐biased). We encountered a total of 33 sporophytes in six patches (in Brazil, Venezuela and Ecuador). Leaf regenerants were found in one patch in Mexico. Low rates of sporophytes were likely related to low frequencies of male shoots and large distances between the sexes. As 25% of S. rubricaulis shoots expressed sex (occasionally producing sporophytes), we suggest that short‐distance (and rarely long‐distance) spore dispersal events occur in mountainous areas on a short‐term basis. On a long‐term basis, however, these events likely contribute to dynamic exchanges among populations in the Neotropics.  相似文献   

2.
The frequency and dynamics of sexual and asexual reproduction were investigated in a dioecious epixylic hepatic, Anastrophyllum hellerianum, which has declined in recent decades in Finland as a consequence of forestry practices. In our investigation asexual reproduction by gemmae was the dominant mode of reproduction and specialised gemmiparous shoots were present in all colonies studied. The proportions of dead shoots were considerably higher among sex-expressing than among non-sexexpressing shoots. Our results suggest that lower reproductive investment is required for asexual than for sexual reproduction. For instance, no trade-off is detected between asexual reproduction and survival of the gemmiparous shoots in A. hellerianum. Sexual reproduction occurred only in 12% of the colonies and it was promoted by the following factors: medium shoot density, high proportion of sex-expressing shoots, an even sex ratio and very short distances between individuals representing opposite sexes. The ratio of dead males to dead females was significantly female-biased, which suggests higher mortality among female shoots. At the level of individual shoots, more spores than gemmae were produced. However, as a consequence of the low frequency of sporophyte-bearing shoots, gemma production highly exceeded spore production at the colony level. Furthermore, cultivation tests of the propagules showed that gemmae germinate faster than spores.  相似文献   

3.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

4.
  1. Terrestrial plant populations located at the margins of species’ distributions often display reduced sexual reproduction and an increased reliance on asexual reproduction. One hypothesis to explain this phenomenon is that the decline is associated with environmental effects on the energetic costs to produce reproductive organs.
  2. In order to clarify the changing processes of sexual reproduction along an elevational gradient, we investigated the sexual reproductive parameters, such as the number of sporophytes and gametangia, in Racomitrium lanuginosum, a dioicous moss found on Mt. Fuji.
  3. Matured sporophytes were present only below 3,000 m, and the number of sporophytes per shoot tended to be lower at higher elevation habitats. The numbers of male inflorescences per shoot and antheridia per inflorescence and shoot significantly decreased with increasing elevation. In contrast, the numbers of female inflorescences per shoot and archegonia per inflorescence and shoot varied little across elevations.
  4. Synthesis. Our results suggest that the reasons for this limitation are assumed to be limitations in sporophyte development that result in abortion, and the spatial segregation between males and females. Possible reasons for the abortion of sporophytes are the inhibitory effects of low air temperature, a shortened growth period, and winter environmental conditions at higher elevations. Remarkable differences between male and female on various reproductive parameters found in this study are thought to affect the mode of sexual reproduction under the harsh environment. These differences between males and females may be caused by differences in the costs of production and development of gametangia, sensitivity to environmental stressors, and phenological patterns.
  相似文献   

5.
Asexual lineages derived from dioecious taxa are typically assumed to be all female. Even so, asexual females from a variety of animal taxa occasionally produce males. The existence of these males sets the stage for potential gene flow across asexual lineages as well as between sexual and asexual lineages. A recent study showed that asexual triploid female Potamopyrgus antipodarum, a New Zealand freshwater snail often used as a model to study sexual reproduction, occasionally produce triploid male offspring. Here, we show that these triploid male P. antipodarum (1) have testes that produce morphologically normal sperm, (2) make larger sperm cells that contain more nuclear DNA than the sperm produced by diploid sexual males, and (3) produce sperm that range in DNA content from haploid to diploid, and are often aneuploid. Analysis of meiotic chromosomes of triploid males showed that aberrant pairing during prophase I probably accounts for the high variation in DNA content among sperm. These results indicate that triploid male P. antipodarum produce sperm, but the extent to which these sperm are able to fertilize female ova remains unclear. Our results also suggest that the general assumption of sterility in triploid males should be more closely examined in other species in which such males are occasionally produced. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 227–234.  相似文献   

6.
How changes in selective regimes affect trait evolution is an important open biological question. We take advantage of naturally occurring and repeated transitions from sexual to asexual reproduction in a New Zealand freshwater snail species, Potamopyrgus antipodarum, to address how evolution in an asexual context—including the potential for relaxed selection on male‐specific traits—influences sperm morphology. The occasional production of male offspring by the otherwise all‐female asexual P. antipodarum lineages affords a unique and powerful opportunity to assess the fate of sperm traits in a context where males are exceedingly rare. These comparisons revealed that the sperm produced by ‘asexual’ males are markedly distinct from sexual counterparts. We also found that the asexual male sperm harboured markedly higher phenotypic variation and was much more likely to be morphologically abnormal. Together, these data suggest that transitions to asexual reproduction might be irreversible, at least in part because male function is likely to be compromised. These results are also consistent with a scenario where relaxed selection and/or mutation accumulation in the absence of sex translates into rapid trait degeneration.  相似文献   

7.
ABSTRACT

Introduction. A well-supported pattern among dioicous bryophytes is male rarity. However, few assessments of bryophyte sex ratios have been made across environmental gradients to assess the role of environment in shaping population sex ratios.

Methods. We systematically surveyed 200 shoots from a 20?m2 urban population of Bryum argenteum, and regenerated each shoot apex until sex expression occurred (up to 315 days).

Key results. Female shoots outnumbered male shoots 132 to 68, giving a sex ratio of 1.94♀: 1♂. The female bias was found in two transects in higher light environments but not in the third transect, which had a lower light level and an equal sex ratio. Female shoots took longer than male shoots to reach gametangial induction (122 vs. 60 days) and longer to produce 5 inflorescences (120 vs. 80 days). Male shoots produced an average of 10× the total number of inflorescences compared to female shoots (34 vs. 3.5 inflorescences). Despite producing more inflorescences, male plants also produced more regenerant shoots, thus contradicting the prediction that a higher prefertilisation reproductive effort in males trades off with vegetative proliferation. Female plants harboured significantly more associated microbes than male plants.

Conclusions. Our results support the role of light in influencing sex ratios in this species, suggest that trade-offs between reproduction and vegetative growth may not be strong for males, and indicate a potential role of a sex-specific microbiome in influencing sex ratios.  相似文献   

8.
Several non‐mutually exclusive hypotheses predict adaptive variation in the offspring sex ratio. When conditions for breeding are adverse, parents are predicted to produce more offspring of the less costly sex to rear (‘the cost‐of‐reproduction hypothesis’). Moreover, they also should produce the more dispersing sex in order to diminish future competition (‘the local‐resource‐competition hypothesis’). Here, we analyse brood sex ratio according to rearing conditions in the southern shrike Lanius meridionalis, a species with moderately reversed sexual dimorphism. Our results suggest that females are more costly to rear than males in this species. Adult females proved heavier than males, and female nestling tended to be heavier than male nestlings. Moreover, the greater brood reduction, the more male‐biased was the brood, suggesting that brood reduction implied higher mortality in female nestlings. Consistent with these findings, the brood sex ratio was biased to the less costly sex (males) when breeding conditions were adverse (bad years or low‐quality male parents), supporting the cost‐of‐reproduction hypothesis. By contrast, these findings did not support the local‐resource‐competition hypothesis, which predicted female‐biased brood sex ratio under adverse conditions. As a whole, our results support the idea that birds adaptively modulate sex ratio in order to minimize reproduction costs.  相似文献   

9.
Abstract Is the cost of reproduction different between males and females? On the one hand, males typically compete intensely for mates, thus sexual selection theory predicts higher cost of reproduction for males in species with intense male‐male competition. On the other hand, care provisioning such as incubating the eggs and raising young may also be costly, thus parental care theory predicts higher mortality for the care‐giving sex, which is often the female. We tested both hypotheses of reproductive costs using phylogenetic comparative analyses of sex‐specific adult mortality rates of 194 bird species across 41 families. First, we show that evolutionary increases in male‐male competition were associated with male‐biased mortalities. This relationship is consistent between two measures of mating competition: social mating system and testis size. Second, as predicted by the parental cost hypothesis, females have significantly higher adult mortalities (mean ± SE, 0.364 ± 0.01) than males (0.328 ± 0.01). However, the mortality cost of parental care was only detectable in males, when the influence of mating competition was statistically controlled. Taken together, our results challenge the traditional explanation of female‐biased avian mortalities, because evolutionary changes in female care were unrelated to changes in mortality bias. The interspecific variation in avian mortality bias, as we show here, is driven by males, specifically via the costs of both mating competition and parental care. We also discuss alternative hypotheses for why most birds exhibit female‐biased mortalities, whereas in mammals male‐biased mortalities predominate.  相似文献   

10.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

11.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

12.
In isogamous brown algae, the sexuality of populations needs to be tested by laboratory crossing experiments, as the sexes of gametophytes are morphologically indistinguishable. In some cases, gamete fusion is not observed and the precise reproductive mode of the populations is unknown. In the isogamous brown alga Scytosiphon lomentaria in Japan, both asexual (gamete fusion is unobservable) and sexual populations (gamete fusion is observable) have been reported. In order to elucidate the reproductive mode of asexual populations in this species, we used PCR‐based sex markers to investigate the sex ratio of three asexual and two sexual field populations. The markers indicated that the asexual populations consisted only of female individuals, whereas sexual populations are composed of both males and females. In culture, female gametes of most strains from asexual populations were able to fuse with male gametes; however, they had little to no detectable sexual pheromones, significantly larger cell sizes, and more rapid parthenogenetic development compared to female/male gametes from sexual populations. Investigations of sporophytic stages in the field indicated that alternation of gametophytic and parthenosporophytic stages occur in an asexual population. These results indicate that the S. lomentaria asexual populations are female populations that lack sexual reproduction and reproduce parthenogenetically. It is likely that females in the asexual populations have reduced a sexual trait (pheromone production) and have acquired asexual traits (larger gamete sizes and rapid parthenogenetic development).  相似文献   

13.
Species in which both sex and parthenogenesis co‐occur are extremely valuable for investigating ecological conditions favouring sex. Tychoparthenogenesis is a breeding system characterized by hatching of a small proportion of unfertilized eggs (typically < 10%) from females of sexually reproducing species. With tychoparthenogenesis, both sexual and parthenogenetic reproduction co‐occur within the same population. To identify ecological conditions that may favour this breeding system, I quantified population variation in females’ capacity for tychoparthenogenesis and investigated biotic and abiotic correlates of tychoparthenogenesis. I estimated tychoparthenognetic capacity (proportion of unfertilized eggs hatching) for females from 12 Missouri populations of the mayfly, Stenonema femoratum (Ephemeroptera: Heptageniidae), across three different habitat types – temporary streams, permanent streams and lakes. Tychoparthenogenetic capacity, measured as the population mean hatch success of unfertilized eggs, ranged from 3.8 to 10.7%. Tychoparthenogenetic capacity varied among habitats in 1996, but not in 1997. In 1996, temporary streams showed hatch success of unfertilized eggs twice that of permanent streams and lakes. Tychoparthenogenetic capacity also varied among sampling dates within years. Temporary streams also showed extremely low nymph densities compared to the other two habitats. However, habitats did not differ in adult density. Furthermore, in all populations nymphs showed significantly female‐biased sex ratios. In contrast, adult sex ratios were equal or slightly male biased. Tychoparthenogenetic capacity was negatively correlated with nymph density in 1996, but not in 1997, suggesting possible reproductive assurance in some years. Adult densities also suggested that there may be certain times of year when tychoparthenogenesis may provide benefits of reproductive assurance. Although habitats differed significantly in their abiotic characteristics, tychoparthenogenetic capacity was correlated significantly with water temperature only. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 75 , 101–123.  相似文献   

14.
Cyclical parthenogenesis presents an interesting challenge for the study of sex allocation, as individuals’ allocation decisions involve both the choice between sexual and asexual reproduction, and the choice between sons and daughters. Male production is therefore expected to depend on ecological and evolutionary drivers of overall investment in sex, and those influencing male reproductive value during sexual periods. We manipulated experimental populations, and made repeated observations of natural populations over their growing season, to disentangle effects of population density and the timing of sex from effects of adult sex ratio on sex allocation in cyclically parthenogenetic Daphnia magna. Male production increased with population density, the major ecological driver of sexual reproduction; however, this response was dampened when the population sex ratio was more male‐biased. Thus, in line with sex ratio theory, we show that D. magna adjust offspring sex allocation in response to the current population sex ratio.  相似文献   

15.
The attainment of sexual maturity has been shown to affect measures of sexual size dimorphism (SSD) and adult sex ratios in several groups of vertebrates. Using data for turtles, we tested the model that sex ratios are expected to be male‐biased when females are larger than males and female‐biased when males are larger than females because of the relationship of each with the attainment of maturity. Our model is based on the premise that the earlier‐maturing sex remains smaller, on average throughout life, and predominates numerically unless the sexes are strongly affected by differential mortality, differential emigration, and immigration, or biased primary sex ratios. Based on data for 24 species in seven families, SSD and sex ratios were significantly negatively correlated for most analyses, even after the effect of phylogenetic bias was removed. The analyses provide support for the model that SSD and adult sex ratios are correlated in turtles as a result of simultaneous correlation of each with sexual differences in attainment of maturity (bimaturism). Environmental sex determination provides a possible mechanism for the phenomenon in turtles and some other organisms. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 142–149.  相似文献   

16.
Dioecious plants, including many bryophytes, rarely exhibit discernible sexual dimorphism before sexual maturity. Because many species and populations of dioecious bryophytes do not express their sex, it remains mostly unresolved whether expressing individuals reflect the ratios of genetically male and female plants. The present study assesses the population sex ratio of the wetland moss Pseudocalliergon trifarium in central and northern Europe. For the first time in a bryophyte, we estimate the sex ratio in a population by assessing directly both expressing and non‐expressing plants. Expressed gender ratio was assessed from herbarium specimens. Single shoots from non‐expressing specimens were sexed using a recently developed molecular sex marker. On the basis of the female and male frequencies in these two data sets and the overall proportion of expressing specimens, we estimate the European population sex ratio to be 1.93 : 1 (female/male). Expressed, non‐expressed, and population sex ratios are not significantly different from each other, suggesting that gender differences in rates of sex expression cannot account for the female bias. Earlier studies of P. trifarium failed to reveal gender‐specific growth rates or pre‐zygotic reproductive costs. Gender differences at the spore to protonemal stage, in mortality, or niche preferences could potentially explain the uneven sex ratio. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 132–140.  相似文献   

17.
Small populations may suffer more severe pollen limitation and result in Allee effects. Sex ratio may also affect pollination and reproduction success in dioecious species, which is always overlooked when performing conservation and reintroduction tasks. In this study, we investigated whether and how population size and sex ratio affected pollen limitation and reproduction in the endangered Ottelia acuminata, a dioecious submerged species. We established experimental plots with increasing population size and male sex ratio. We observed insect visitation, estimated pollen limitation by hand‐pollinations and counted fruit set and seed production per fruit. Fruit set and seed production decreased significantly in small populations due to pollinator scarcity and thus suffered more severe pollen limitation. Although frequently visited, female‐biased larger populations also suffered severe pollen limitation due to few effective visits and insufficient pollen availability. Rising male ratio enhanced pollination service and hence reproduction. Unexpectedly, pollinator preferences did not cause reduced reproduction in male‐biased populations because of high pollen availability. However, reproductive outputs showed more variability in severe male‐biased populations. Our results revealed two component Allee effects in fruit set and seed production, mediated by pollen limitation in O. acuminata. Moreover, reproduction decreased significantly in larger female‐biased populations, increasing the risk of an Allee effect.  相似文献   

18.
树干附生尖叶拟船叶藓性比和有性生殖的比例   总被引:1,自引:0,他引:1  
刘冰  李菁  田启建  陈功锡  陈军 《广西植物》2008,28(4):440-442
通过对贵州梵净山树干附生尖叶拟船叶藓的野外调查和室内研究,结果表明,在44个被调查样方共计1320株植株中,尖叶拟船叶藓单株的性比为8♀∶1♂(N=1320),其中25.0%的单株没有进行性表达;其种群的性比为5♀∶1♀♂(雌性种群:混合种群,N=44),没有发现雄性种群;其单株的有性生殖的比例为10.5%,种群的有性生殖比例为9.3%。结果表明尖叶拟船叶藓种群具有明显的雌性偏向,其种群的自然更新更多的是依赖各种营养繁殖。  相似文献   

19.
《Journal of bryology》2013,35(3):206-215
Abstract

Octoblepharum albidum Hedw. is an autoicous moss commonly occurring in tropical savannas, dry forests, rainforests and coastal habitats. It frequently reproduces by spores and asexual structures (gemmae and protonemata or buds at leaf tips), making it a good model for understanding how reproductive traits change with respect to habitat type. Our aims were to characterize the different life-history traits in O. albidum relative to sexual and asexual cycles and to detect variations in reproductive performance among the different habitats, trade-offs among these traits, and relationships among reproductive traits and plant length. We studied colonies from two Atlantic rainforests and two coastal sites in north-eastern Brazil. Shoots in the coastal sites, compared to those of the forest sites, had higher numbers of sporophytes, male and female branches per shoot, male gametangia per sexual branch, and longer setae. Numbers of female gametangia per sexual branch did not differ between forest and coastal sites. A male-biased sex ratio of branches and gametangia occurred in all sites. Compared to gemmae, sporophytes and protonemata or buds were more likely to be found on longer shoots than on shorter ones, but this relationship was only applicable to forest sites. The abundant production of gemmae and protonemata or buds at leaf tips, and sporophytes (spores) in O. albidum are important components in explaining colonization success and maintenance in this tropical moss. Longer sporophytic setae in addition to a higher reproductive performance (especially for number of male gametangia and sporophytes per shoot) may favour spore dispersal and colonization in plants of coastal sites.  相似文献   

20.
Females that invest adaptively in their offspring are predicted to channel more resources to the sex that will be at an advantage in the prevailing environmental conditions. Here, we report, for the first time, that female Trinidadian guppy, Poecilia reticulata, respond in reproductively distinct ways when faced with differences in operational sex ratio. We show that females assigned to a female‐biased sex ratio produce larger male offspring than females in an environment in which males predominate. Given the link between size at birth and fitness, and the marked reproductive skew in this species, larger male offspring are expected to have reproductive advantages in guppy populations with an excess of females. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 414–419.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号