首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Next‐generation sequencing and the collection of genome‐wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD‐sequenced European eel individuals (glass eels) from eight locations between 34 and 64oN, we examined the patterns of genome‐wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using FST‐based outlier tests and by testing for significant associations between allele frequencies and environmental variables. The overall low genetic differentiation found (FST = 0.0007) indicates that most of the genome is homogenized by gene flow, providing further evidence for genomic panmixia in the European eel. The lack of genetic substructuring was consistent at both nuclear and mitochondrial SNPs. Using an extensive number of diagnostic SNPs, results showed a low occurrence of hybrids between European and American eel, mainly limited to Iceland (5.9%), although individuals with signatures of introgression several generations back in time were found in mainland Europe. Despite panmixia, a small set of SNPs showed high genetic differentiation consistent with single‐generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand–receptor interaction and circadian rhythm. Remarkably, one of the candidate genes identified is PERIOD, possibly related to differences in local photoperiod associated with the >30° difference in latitude between locations. Genes under selection were spread across the genome, and there were no large regions of increased differentiation as expected when selection occurs within just a single generation due to panmixia. This supports the conclusion that most of the genome is homogenized by gene flow that removes any effects of diversifying selection from each new generation.  相似文献   

2.
A key aim of evolutionary biology – inferring the action of natural selection on wild species – can be achieved by comparing neutral genetic differentiation between populations (FST) with quantitative genetic variation (QST). Each of the three possible outcomes of comparisons of QST and FST (QST FST, QST FST, QST FST) is associated with an inference (diversifying selection, genetic drift, uniform selection, respectively). However, published empirical and theoretical studies have focused on the QST FST outcome. We believe that this reflects the absence of a straightforward biological interpretation of the QST < FST pattern. We here report recent evidence of this neglected evolutionary pattern, provide guidelines to its interpretation as either a canalization phenomenon or a consequence of uniform selection and discuss the significant importance this issue will have for the area of evolutionary biology.  相似文献   

3.
4.
This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (= 17), Tankwa (= 15) and South African village (= 35) goat populations. A range of 27–58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within‐breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within‐population selection programs, particularly with SA village goats.  相似文献   

5.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

6.
The Korean Hanwoo cattle have been intensively selected for production traits, especially high intramuscular fat content. It is believed that ancient crossings between different breeds contributed to forming the Hanwoo, but little is known about the genomic differences and similarities between other cattle breeds and the Hanwoo. In this work, cattle breeds were grouped by origin into four types and used for comparisons: the Europeans (represented by six breeds), zebu (Nelore), African taurine (N'Dama) and Hanwoo. All animals had genotypes for around 680 000 SNPs after quality control of genotypes. Average heterozygosity was lower in Nelore and N'Dama (0.22 and 0.21 respectively) than in Europeans (0.26–0.31, with Shorthorn as outlier at 0.24) and Hanwoo (0.29). Pairwise FST analyses demonstrated that Hanwoo are more related to European cattle than to Nelore, with N'Dama in an intermediate position. This finding was corroborated by principal components and unsupervised hierarchical clustering. Using genome‐wide smoothed FST, 55 genomic regions potentially under positive selection in Hanwoo were identified. Among these, 29 were regions also detected in previous studies. Twenty‐four regions were exclusive to Hanwoo, and a number of other regions were shared with one or two of the other groups. These regions overlap a number of genes that are related to immune, reproduction and fatty acid metabolism pathways. Further analyses are needed to better characterize the ancestry of the Hanwoo cattle and to define the genes responsible to the identified selection peaks.  相似文献   

7.
The importance of speciation‐with‐geneflow scenarios is increasingly appreciated. However, the specific processes and the resulting genomic footprints of selection are subject to much discussion. We studied the genomics of speciation between the two panmictic, sympatrically spawning sister species; European (Anguilla anguilla) and American eel (A. rostrata). Divergence is assumed to have initiated more than 3 Ma, and although low gene flow still occurs, strong postzygotic barriers are present. Restriction‐site‐associated DNA (RAD) sequencing identified 328 300 SNPs for subsequent analysis. However, despite the presence of 3757 strongly differentiated SNPs (FST > 0.8), sliding window analyses of FST showed no larger genomic regions (i.e. hundreds of thousands to millions of bases) of elevated differentiation. Overall FST was 0.041, and linkage disequilibrium was virtually absent for SNPs separated by more than 1000 bp. We suggest this to reflect a case of genomic hitchhiking, where multiple regions are under directional selection between the species. However, low but biologically significant gene flow and high effective population sizes leading to very low genetic drift preclude accumulation of strong background differentiation. Genes containing candidate SNPs for positive selection showed significant enrichment for gene ontology (GO) terms relating to developmental processes and phosphorylation, which seems consistent with assumptions that differences in larval phase duration and migratory distances underlie speciation. Most SNPs under putative selection were found outside coding regions, lending support to emerging views that noncoding regions may be more functionally important than previously assumed. In total, the results demonstrate the necessity of interpreting genomic footprints of selection in the context of demographic parameters and life‐history features of the studied species.  相似文献   

8.
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA‐Seq) of bulked pools to identify single‐nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome‐specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty‐eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77‐cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker‐assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high‐resolution genetic maps across target intervals.  相似文献   

9.
Compromised eggshell quality causes considerable economic losses for the egg industry. Breeding for improved eggshell quality has been very challenging. Eggshell quality is a trait that would greatly benefit from marker‐assisted selection, which would allow the selection of sires for their direct contribution to the trait and would also allow implementation of measurements integrating a number of shell parameters that are difficult to measure. In this study, we selected the most promising autosomal quantitative trait loci (QTL) affecting eggshell quality on chromosomes 2, 3, 6 and 14 from earlier experiments and we extended the F2 population to include 1599 F2 females. The study was repeated on two commercial populations: Lohmann Tierzucht Rhode Island Red line (= 692 females) and a Hy‐Line White Plymouth Rock line (= 290 progeny tested males). We analyzed the selected autosomal QTL regions on the three populations with SNP markers at 4–13 SNPs/Mb density. QTL for eggshell quality were replicated on all studied regions in the F2 population. New QTL were detected for eggshell color on chromosomes 3 and 6. Marker associations with eggshell quality traits were validated in the tested commercial lines on chromosomes 2, 3 and 6, thus paving the way for marker‐assisted selection for improved eggshell quality.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) are replacing microsatellites for population genetic analyses, but it is not apparent how many SNPs are needed or how well SNPs correlate with microsatellites. We used data from the gopher tortoise, Gopherus polyphemus—a species with small populations, to compare SNPs and microsatellites to estimate population genetic parameters. Specifically, we compared one SNP data set (16 tortoises from four populations sequenced at 17 901 SNPs) to two microsatellite data sets, a full data set of 101 tortoises and a partial data set of 16 tortoises previously genotyped at 10 microsatellites. For the full microsatellite data set, observed heterozygosity, expected heterozygosity and FST were correlated between SNPs and microsatellites; however, allelic richness was not. The same was true for the partial microsatellite data set, except that allelic richness, but not observed heterozygosity, was correlated. The number of clusters estimated by structure differed for each data set (SNPs = 2; partial microsatellite = 3; full microsatellite = 4). Principle component analyses (PCA) showed four clusters for all data sets. More than 800 SNPs were needed to correlate with allelic richness, observed heterozygosity and expected heterozygosity, but only 100 were needed for FST. The number of SNPs typically obtained from next‐generation sequencing (NGS) far exceeds the number needed to correlate with microsatellite parameter estimates. Our study illustrates that diversity, FST and PCA results from microsatellites can mirror those obtained with SNPs. These results may be generally applicable to small populations, a defining feature of endangered and threatened species, because theory predicts that genetic drift will tend to outweigh selection in small populations.  相似文献   

11.
Although adaptive divergence along environmental gradients has repeatedly been demonstrated, the role of post‐glacial colonization routes in determining phenotypic variation along gradients has received little attention. Here, we used a hierarchical QSTFST approach to separate the roles of adaptive and neutral processes in shaping phenotypic variation in moor frog (Rana arvalis) larval life histories along a 1,700 km latitudinal gradient across northern Europe. This species has colonized Scandinavia via two routes with a contact zone in northern Sweden. By using neutral SNP and common garden phenotypic data from 13 populations at two temperatures, we showed that most of the variation along the gradient occurred between the two colonizing lineages. We found little phenotypic divergence within the lineages; however, all phenotypic traits were strongly diverged between the southern and northern colonization routes, with higher growth and development rates and larger body size in the north. The QST estimates between the colonization routes were four times higher than FST, indicating a prominent role for natural selection. QST within the colonization routes did not generally differ from FST, but we found temperature‐dependent adaptive divergence close to the contact zone. These results indicate that lineage‐specific variation can account for much of the adaptive divergence along a latitudinal gradient.  相似文献   

12.
Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high‐ and low‐elevation plots on four different mountains situated along a 170‐km east–west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east–west isolation by distance among mountain sites. FST outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using FST outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. QSTFST tests for fitness‐related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east‐to‐west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales.  相似文献   

13.
The identification of the candidate genes that play key role in phenotypic variation in livestock populations can provide new information about evolution and positive selection. IL‐33 (71954) (Interleukin) gene is associated with the increased nematode resistance in small ruminants; however, the role of IL‐33 for the genetic control of different diseases in Chinese goat breeds is poorly described in scientific literature. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single‐nucleotide polymorphism in IL‐33 gene. Fixation Index (FST)‐based method was used for the outlier loci determination and found that IL‐33 was present in outlier area with the provisional combined allocation of mean heterozygosity and FST. Positively selected IL‐33 gene was significantly, that is, p(Simul FST < sample FST = 0.98*) present in corresponding positive selection area. Hence, our study provided novel information about the nucleotide variations in IL‐33 gene and found to be nonsynonymous which may helpful for the genetic control of diseases by enhancing the immune system in local Chinese goat breeds as well as in other analyzed vertebrate species.  相似文献   

14.
To study effects from natural selection acting on brown trout in a natural stream habitat compared with a hatchery environment, 3,781 single nucleotide polymorphism (SNP) markers were analyzed in three closely related groups of brown trout (Salmo trutta L.). Autumn (W/0+, = 48) and consecutive spring (W/1+, = 47) samples of brown trout individuals belonging to the same cohort and stream were retrieved using electrofishing. A third group (H/1+, = 48) comprised hatchery‐reared individuals, bred from a mixture of wild parents of the strain of the two former groups and from a neighboring stream. Pairwise analysis of FST outliers and analysis under a hierarchical model by means of ARLEQUIN software detected 421 (10.8%) candidates of selection, before multitest correction. BAYESCAN software detected 10 candidate loci, all of which were included among the ARLEQUIN candidate loci. Body length was significantly different across genotypes at 10 candidate loci in the W/0+, at 34 candidate loci in the W/1+ and at 21 candidate loci in the H/1+ group. The W/1+ sample was tested for genotype‐specific body length at all loci, and significant differences were found in 10.6% of all loci, and of these, 14.2% had higher frequency of the largest genotype in the W/1+ sample than in W/0+. The corresponding proportion among the candidate loci of W/1+ was 22.7% with genotype‐specific body length, and 88.2% of these had increased frequency of the largest genotype from W/0+ to W/1+, indicating a linkage between these loci and traits affecting growth and survival under this stream's environmental conditions. Bayesian structuring of all loci, and of the noncandidate loci suggested two (= 2), alternatively four clusters (= 4). This differed from the candidate SNPs, which suggested only two clusters. In both cases, the hatchery fish dominated one cluster, and body length of W/1+ fish was positively correlated with membership of one cluster both from the = 2 and the = 4 structure. Our analysis demonstrates profound genetic differentiation that can be linked to differential selection on a fitness‐related trait (individual growth) in brown trout living under natural vs. hatchery conditions. Candidate SNP loci linked to genes affecting individual growth were identified and provide important inputs into future mapping of the genetic basis of brown trout body size selection.  相似文献   

15.
The optimal management of the commercially important, but mostly over‐exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between‐ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17‐SNP panel was developed in Atlantic BFT by cross‐species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.  相似文献   

16.
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.  相似文献   

17.
With its small, diploid and completely sequenced genome, sorghum (Sorghum bicolor L. Moench) is highly amenable to genomics‐based breeding approaches. Here, we describe the development and testing of a robust single‐nucleotide polymorphism (SNP) array platform that enables polymorphism screening for genome‐wide and trait‐linked polymorphisms in genetically diverse S. bicolor populations. Whole‐genome sequences with 6× to 12× coverage from five genetically diverse S. bicolor genotypes, including three sweet sorghums and two grain sorghums, were aligned to the sorghum reference genome. From over 1 million high‐quality SNPs, we selected 2124 Infinium Type II SNPs that were informative in all six source genomes, gave an optimal Assay Design Tool (ADT) score, had allele frequencies of 50% in the six genotypes and were evenly spaced throughout the S. bicolor genome. Furthermore, by phenotype‐based pool sequencing, we selected an additional 876 SNPs with a phenotypic association to early‐stage chilling tolerance, a key trait for European sorghum breeding. The 3000 attempted bead types were used to populate half of a dual‐species Illumina iSelect SNP array. The array was tested using 564 Sorghum spp. genotypes, including offspring from four unrelated recombinant inbred line (RIL) and F2 populations and a genetic diversity collection. A high call rate of over 80% enabled validation of 2620 robust and polymorphic sorghum SNPs, underlining the efficiency of the array development scheme for whole‐genome SNP selection and screening, with diverse applications including genetic mapping, genome‐wide association studies and genomic selection.  相似文献   

18.
Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south‐eastern France). We performed both single and multilocus analysis of selection based on 53 climate‐related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes factors over many possible phase reconstructions. Epistatic selection offers a realistic multilocus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Overall populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a nonsynonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low elevations and northern or southern populations. Several haplotypes contained nonsynonymous mutations situated in genes with known functional importance for adaptation to climatic factors.  相似文献   

19.
Divergent selection at ecologically important traits is thought to be a major factor driving phenotypic differentiation between populations. To elucidate the role of different evolutionary processes shaping the variation in gill raker number of European whitefish (Coregonus lavaretus sensu lato) in the Baltic Sea basin, we assessed the relationships between genetic and phenotypic variation among and within three whitefish ecotypes (sea spawners, river spawners and lake spawners). To generate expected neutral distribution of FST and to evaluate whether highly variable microsatellite loci resulted in deflated FST estimates compared to less variable markers, we performed population genetic simulations under finite island and hierarchical island models. The genetic divergence observed among (FCT = 0.010) and within (FST = 0.014–0.041) ecotypes was rather low. The divergence in gill raker number, however, was substantially higher between sea and river spawners compared to observed microsatellite data and simulated neutral baseline (PCT > FCT). This suggests that the differences in gill raker number between sea and river spawners are likely driven by divergent natural selection. We also found strong support for divergent selection on gill raker number among different populations of sea spawners (PST > FST), most likely caused by highly variable habitat use and diverse diet. The putative role of divergent selection within lake spawners initially inferred from empirical microsatellite data was not supported by simulated FST distributions. This work provides a first formal test of divergent selection on gill raker number in Baltic whitefish, and demonstrates the usefulness of population genetic simulations to generate informative neutral baselines for PSTFST analyses helping to disentangle the effects of stochastic evolutionary processes from natural selection.  相似文献   

20.
Widespread species that exhibit both high gene flow and the capacity to occupy heterogeneous environments make excellent models for examining local selection processes along environmental gradients. Here we evaluate the influence of temperature and landscape variables on genetic connectivity and signatures of local adaptation in Phaulacridium vittatum, a widespread agricultural pest grasshopper, endemic to Australia. With sampling across a 900‐km latitudinal gradient, we genotyped 185 P. vittatum from 19 sites at 11,408 single nucleotide polymorphisms (SNPs) using ddRAD sequencing. Despite high gene flow across sites (pairwise FST = 0.0003–0.08), landscape genetic resistance modelling identified a positive nonlinear effect of mean annual temperature on genetic connectivity. Urban areas and water bodies had a greater influence on genetic distance among sites than pasture, agricultural areas and forest. Together, FST outlier tests and environmental association analysis (EAA) detected 242 unique SNPs under putative selection, with the highest numbers associated with latitude, mean annual temperature and body size. A combination of landscape genetic connectivity analysis together with EAA identified mean annual temperature as a key driver of both neutral gene flow and environmental selection processes. Gene annotation of putatively adaptive SNPs matched with gene functions for olfaction, metabolic detoxification and ultraviolet light shielding. Our results imply that this widespread agricultural pest has the potential to spread and adapt under shifting temperature regimes and land cover change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号