首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An experimental 2.15% imidacloprid gel bait containing approximately 44% water was evaluated in laboratory and field studies against the German cockroach, Blattella germanica (L). In continuous exposure tests, toxicity and presumably bait consumption varied with cockroach stage, deprivation of competitive food, and temperature. The LT50 values for cockroaches provided with competitive food ranged from approximately 0.9 h for adult females to 190 h for small nymphs. The LT50s for cockroaches not provided competitive food ranged from approximately 1.7 h for adult females to approximately 31 h for adult males. The LT50s decreased exponentially with temperature between 10 and 30 degrees C. Even though the bait was significantly more repellent (approximately 38%) than an untreated control (approximately 14%) when tested in Ebeling choice boxes, performance index values were positive and increased to nearly 100 (indicating high mortality and low repellency) after 14 d. When applied at 15-45 g per kitchen, the bait significantly reduced German cockroach trap catch in infested homes during a 4-wk period. There was a approximately 50% reduction after 1 wk and approximately 80% reduction 4 wk after treatment.  相似文献   

2.
The drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae), is a pest of stored medicinal and aromatic plants. Generally, mortality of each stage increased with an increase of temperature and exposure time. Heat tolerance for different stages from highest to lowest was young larvae, old larvae, eggs, adult, and pupae. The mortality after 7 h at 42 degrees C for young larvae, old larvae, eggs, adults, and pupae, respectively, was 16 +/- 5, 31 +/- 6, 48 +/- 3, 63 +/- 8, and 86 +/- 2% (mean +/- SEM). Similar trends for stage specific mortality were seen with the lethal time for 90% mortality (LT90) at 42 degrees C; 773, 144, 12, and 11 h for old larvae, eggs, adults, and pupa respectively. Mortality was too low with young larvae to estimate LT90. The LT90 for young larvae at 42, 45, 50, 55, and 60 degrees C was 25, 20, 3.9, 0.18, and 0.08 h, respectively. The cold tolerance of different stages at 0 degree C from highest to lowest was adults, old larvae, young larvae, pupae, and eggs. The LT90 at 0 degrees C was 298, 153, 151, 89, and 53 h, respectively. The LT90 for adults at 5, -5, -10, and -15 degrees C was 792, 58, 2, and 0.8 h, respectively. The supercooling point of adults was -15.2 +/- 2 degrees C; young larvae, -9.0 +/- 0.8 degrees C; old larvae, -6.5 +/- 0.5 degrees C; and pupae, -4.0 +/- 1.4 degrees C. Heat treatments that control young larvae should control all other stages of S. paniceum. Cold treatments that control adults should control all other stages of S. paniceum. Dried plants stored at 5 degrees C for 45 d or 42 degrees C for 30 h and then kept below 18 degrees C throughout the rest of the year, should remain pest-free without any chemical control.  相似文献   

3.
High carbon dioxide atmospheres combined with high temperature were effective for controlling Indian meal moth, Plodia interpunctella (Hübner) pupae. Pupae were exposed to atmospheres of 60, 80, or 98% carbon dioxide (CO2) in nitrogen (N2), or 60 or 80% CO2 in air at temperatures of 26.7 degrees C or 32.2 degrees C and 60% RH. Controlled atmosphere treatments at 32.2 degrees C controlled pupae faster than the same treatments at the lower temperature. At both temperatures high CO2 concentration treatments combined with nitrogen killed pupae faster than high CO2 concentration treatments combined with air. Exposure to 80% carbon dioxide mixed with nitrogen was the most effective treatment causing 100% mortality in 12 h at 32.2 degrees C and 93.3% mortality in 18 h at 26.6 degrees C. High-temperature controlled atmosphere treatments had no adverse effects on quality of two preserved floral products, Limonium sinuatum (L.) and Gypsophila elegans (Bieb.), tested for 12, 18, and 24 h according to industry standards.  相似文献   

4.
At 27 degrees C and 45% r.h. in the laboratory, the oriental cockroach Blatta orientalis (L.) developed to adulthood in seven to nine instars for males (66% had eight instars) and eight to ten instars for females (67% had nine instars) in mixed groups, with up to twelve instars for isolated females. Nymphal development lasted 185 +/- 2 days for males, 216 +/- 4 days for females, with 89% survival to adulthood. Adult longevity was significantly more for males than females in mixed groups. Virgin females lived for 135 +/- 6 days compared with 87 +/- 9 days for females kept with males. After an initial maturation time of 12.2-13.5 +/- 0.4 days for mated and unmated females, oothecae were produced, on average, every 6-7 (range 2-29) days. Ootheca viability was 68% from females kept with males, 32% from females kept apart from males. Numbers of nymphs emerging were 14.1 +/- 0.26 after 45 days from mated female oothecae 8.2 +/- 0.3 after 49 days from unmated females. With sexual reproduction the sex ratio of progeny reaching adulthood was 1.1 males per female (n = 443), whereas unmated females produced only female progency, which is consistent with parthenogenetic reproduction. Drawings of the ventral aspect of the terminalia are given to show features useful for instar determination and for distinguishing between male and female nymphs and adults of B. orientalis.  相似文献   

5.
The giant burrowing cockroach, Macropanesthia rhinoceros, is endemic to north-eastern Australia and excavates a permanent burrow up to 1m deep into soil. Using flow-through respirometry, we investigated gas exchange and water loss at three different oxygen tensions (21%, 10% and 2% at 20 degrees C) and temperatures (10, 20 and 30 degrees C at 21% oxygen). M. rhinoceros employ cyclic gas exchange (CGE) making the species by far the largest insect known to engage in discontinuous ventilation. CGE featured rhythmic bursts of CO(2) dispersed among inter-burst periods of reduced output. CGE was most commonly observed at 20 degrees C and degraded at <10% oxygen. Mild hypoxia (10% oxygen) resulted in a lengthening of the burst period by approximately two-fold; this result is complementary to oxygen consumption data that suggests that the burst period is important in oxygen uptake. When exposed to severe hypoxia (2% oxygen), CGE was degraded to a more erratic continuous pattern. Also, during severe hypoxia, total water loss increased significantly, although CO(2) release was maintained at the same level as in 21% oxygen. During CGE, an increase in temperature from 10 to 20 degrees C caused both water loss and CO(2) output to double; from 20 to 30 degrees C, CO(2) output again doubled but water loss increased by only 31%.  相似文献   

6.
A sex pheromone for adult male oriental cockroaches Blatta orientalis was isolated from the faeces of adult virgin female oriental cockroaches. It elicited a sexual response at 10 pg and 1 ng with B. orientalis and Periplaneta americana adult males, respectively. The site of production appers to be the crop, oesophagus, and proventriculus. Electroantennogram responses of male antennae toward the isolated pheromone were greater than those of the female antennae. The adult male oriental cockroach also responded to the American cockroach sex pheromone. The isolated pheromone with a mol. wt of 232 may be similar to one of the components of the American cockroach sex pheromone.  相似文献   

7.
In this study, reduced levels of ventilation were applied to small clusters of bees under controlled conditions to determine whether lowered ventilation rates and the resulting increased levels of CO2 could increase the mortality rates of varroa. Two experiments were performed at two different temperatures (10 degrees C and 25 degrees C). Both experiments compared varroa mortality among high (360 liters/h), medium (42.5 liters/h), and low (14 liters/h) rates of ventilation. The clusters of bees (approximately 300 worker bees) in bioassay cages with 40 introduced varroa mites were placed into self-contained glass chambers and were randomly assigned to one of the three ventilation treatments within incubators set at either of the two temperatures. Bee and varroa mortality and the levels of CO2 concentration were measured in each of the experimental chambers. In both experiments, CO2 levels within the chamber increased, with a decrease in ventilation with CO2 reaching a maximum of 1.2 +/- 0.45% at 10 degrees C and 2.13 +/- 0.2% at 25 degrees C under low ventilation. At high ventilation rates, CO2 concentration in chamber air was similar at 10 degrees C (1.1 +/- 1.5%) and 25 degrees C (1.9 +/- 1.1%). Both humidity and CO2 concentration were higher at 25 degrees C than at 10 degrees C. Bee mortality was similar within all ventilation rate treatments at either 10 degrees C (11.5 +/- 2.7-19.3 +/- 3.8%) or 25 degrees C (15.2 +/- 1.9-20.7 +/- 3.5%). At 10 degrees C, varroa mortality (percentage dead) was greatest in the high ventilation treatment (12.2 +/- 2.1%), but only slightly higher than under low (3.7 +/- 1.7%) and medium ventilation (4.9 +/- 1.6%). At 25 degrees C, varroa mortality was greatest under low ventilation at 46.12 +/- 7.7% and significantly greater than at either medium (29.7 +/- 7.4%) or low ventilation (9.5 +/- 1.6.1%). This study demonstrates that at 25 degrees C, restricted ventilation, resulting in high levels of CO2 in the surrounding environment of small clusters of honey bees, has the potential to substantially increase varroa mortality.  相似文献   

8.
Two high-temperature, forced air treatments under controlled atmosphere conditions, called CATTS for controlled atmosphere/temperature treatment system, were developed for control of all life stages of codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), infesting peaches and nectarines (both Prunus spp.). These treatments were used in efficacy and confirmation tests to kill > 5,000 fourth instar oriental fruit moths and > 30,000 fourth instar codling moths with zero survivors. The treatments consist of linear heating rates of either 12 or 24 degrees C/h to a final chamber temperature under a 1% O2, 15% CO2, and > 90% RH atmosphere with air speed between 1.2 and 2.0 m/s. At a 12 degrees C linear chamber heating rate, treatment takes approximately 3 h to reach a final chamber temperature of 46 degrees C. The average lowest core temperatures of the fruit reached 43.8 degrees C within the last 30 min of the treatment. At a 24 degrees C linear chamber heating rate, it takes approximately 2.5 h to reach a final chamber temperature of 46 degrees C. The average lowest core temperatures of the fruit reached 44.6 degrees C for the last 15 min of the treatment. It also was determined that both treatments did not significantly alter the quality parameters that were evaluated to a degree that would have negatively influenced the marketability of the fruit. Positive benefits of treatment included a slower ripening of treated fruit and an inhibition of the loss of juiciness during storage in some cultivars. These treatments may be used to replacement to methyl bromide fumigation for conventional fruit or as a new treatment for organic fruit contingent upon importing country approval.  相似文献   

9.
Invasive ectothermic species are limited in their geographic range expansion primarily by their capacity to withstand temperature extremes. Epiphyas postvittana is a highly polyphagous invasive leafroller that was discovered in California in 2006. To predict its potential range and future response to climate change, high temperature tolerance of this species was determined for all life stages and larval instars. Using the static method to estimate high temperature tolerance with response to probing as an endpoint, the mean time leading to 50% mortality (LT(50)) ranged from 45 to 187h at 32.3°C, 34 to 68h at 36°C, 11 to 21h at 38°C, and 1.2 to 5.6h at 40.4°C. There was no clear pattern in the relative tolerance of the life stages across the range of temperatures tested. For pupae and adults, gender did not influence the LT(50) values at any of the temperatures tested. For the larval instars, LT(50) values increased with increasing larval instar at the highest three temperatures while this trend was reversed for the lowest temperature (32.3°C). An analysis of LT(50) values obtained from acute responses to probing compared to subsequent survival to adult emergence, showed that chronic mortality severely affected all larval instars at three out of the four constant temperatures and resulted in 64-85% reduction in LT(50) values. No difference in acute and chronic mortality was found for exposure of the egg stage to high temperatures. These findings have important implications for predicting thermal limits and range expansions of insect species, since upper thermal tolerance could readily be overestimated from the use of ad hoc rather than ecologically relevant endpoint measurements such as survival to adult emergence.  相似文献   

10.
We studied the colligative cryoprotective effect of ethanol (EtOH) in preserving the isolated rat heart frozen at -3.4 degrees C or unfrozen at -1.4 degrees C. Addition of 4.7% (v/v) EtOH to a cardioplegic solution, CP-14, raised the osmolality from 280 to 1100 mOsm/kg H2O and lowered the melting point from -0.52 to -2.1 degrees C. Freezing of the cardiac explant at -3.4 degrees C for 6 h resulted in 34.3 +/- 1.9% of the tissue water as ice; recovery of cardiac output (CO) was 50%. Polyethylene glycol, which at 5% (w/v) has been shown to cryoprotect the hearts during freezing at -1.4 degrees C, did not improve the protective effect of 4.7% EtOH. CP-14 + 4.7% EtOH did not freeze at -1.4 degrees C. After 6 h storage, CO in hearts flushed with CP-14 + 4.7% EtOH oxygenated with 95% O2/5%CO2 returned to almost control level and was much higher than that in hearts flushed with 100% O2 saturated-CP-14 + 4.7% EtOH. Storage of 8 and 12 h reduced CO to 87 +/- 9 and 60 +/- 5% of control. By employing EtOH as a colligative cryoprotectant, we preserved the adult mammalian heart frozen at -3.4 degrees C or unfrozen at -1.4 degrees C, suggesting that this small molecular weight, penetrating substance may be a suitable cryoprotectant for long-term storage of the cardiac explant at high subzero temperatures.  相似文献   

11.
Phosphine is used for fumigating stored commodities, however an understanding of the physiological response to phosphine in insects is limited. Here we show how the central pattern generator for ventilation in the central nervous system (CNS) responds to phosphine and influences normal resting gas exchange. Using the American cockroach, Periplaneta americana, that perform discontinuous gas exchange (DGE) at rest, we simultaneously measure ventilatory nervous output from the intact CNS, VCO(2) and water loss from live specimens. Exposure to 800 ppm phosphine at 25 degrees C for 2 h (n=13) during recording did not cause any mortality or obvious sub-lethal effects. Within 60 s of introducing phosphine into the air flow, all animals showed a distinct CNS response accompanied by a burst release of CO(2). The initial ventilatory response to phosphine displaced DGE and was typically followed by low, stable and continuous CO(2) output. CNS output was highest and most orderly under normoxic conditions during DGE. Phosphine caused a series of ventilatory CNS spikes preceding almost complete cessation of CNS output. Minimal CNS output was maintained during the 2 h normoxic recovery period and DGE was not reinstated. VCO(2) was slightly reduced and water loss significantly lower during the recovery period compared with those rates prior to phosphine exposure. A phosphine narcosis effect is rejected based on animals remaining alert at all times during exposure.  相似文献   

12.
The biological and environmental factors affecting survival off-the-host of Otodectes cynotis (Acari: Psoroptidae) ear mites were investigated under natural and laboratory conditions. From November 2000 to November 2002 mites were collected monthly from cats and divided into four groups according to sex and stage. In laboratory conditions, the mites were placed in an incubator with a steady 95% relative humidity (r.h.), a 10 degrees C. All the plates were examined by stereomicroscopy every 24 h until all the mites had died. The data were analysed statistically by multiple linear regression and survival analysis. At 10 degrees C, the maximum survival time of mites was between 15 and 17 days, while at 34 degrees C, it was between 5 and 6 days. The maximum survival time of adult females was significantly longer than that of other stages. No differences were observed in maximum survival times of mites that had been offered food and those that had not, or in the time (in days) to reach 50% mortality (LT50). When exposed to environmental conditions, the maximum survival time (12 days) was observed at temperatures ranging from 12.3 to 14.2 degrees C and r.h.s between 57.6 and 82.9%. Multiple regression analysis showed that temperature alone influenced the maximum survival time and LT50 of mites, and that the rate of survival declined linearly with increasing mean temperature. This basic understanding of off-host survival suggests that, places which have been inhabited by infected animals may need to be disinfected or remain vacated for at least 12 days before occupancy by clean cats or dogs.  相似文献   

13.
The influence of sanitation on responses of life stages of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated in a pilot flour mill subjected to three, 24-h heat treatments by using forced-air gas heaters fueled by propane. Two sanitation levels, dusting of wheat flour and 2-cm-deep flour, were created in 25 plastic bioassay boxes, each holding eggs, young larvae, old larvae, pupae, and adults of T. castaneum plus two temperature sensors. Data loggers (48) were placed on the five mill floors to record air temperatures. The time required to reach 50 degrees C, time above 50 degrees C, and the maximum temperature among mill floors and in bioassay boxes were measured. The maximum temperature in bioassay boxes and in the mill was lower on the first floor than on other floors. This trend was apparent in time required to reach 50 degrees C and time above 50 degrees C, especially in compartments with 2-cm-deep flour. The mean +/- SE mortality of T. castaneum life stages on the first floor was 55.5 +/- 12.9-98.6 +/- 0.8%; it was 93.2 +/- 6.7-100 +/- 0.0% on other floors. Adults were the least susceptible stage. Mortality of T. castaneum stages in compartments with 2-cm-deep flour was generally lower than those with flour dust. Costs for the three heat treatments ranged from US$27,438 to $28,838. An effective heat treatment can be conducted within 24 h, provided temperatures on mill floors reach 50 degrees C in 8-12 h and are held above 50 degrees C for at least 10-14 h, with maximum temperatures held between 50 and 60 degrees C.  相似文献   

14.
The microbial development on fillets of herring from the Baltic Sea was studied at temperatures from 0-15 C in air or 100% carbon dioxide (96-100% CO2). The shelf-life of the fillets , defined as the time for the 'total aerobic count' to reach 1 X 10(7) c.f.u./g increased with decreased temperature from 1 d at 15 degrees C to 7 d at 0 degrees C (air). The corresponding values in CO2 were 3 d and 33 d, respectively. The initial flora of the herring fillets was dominated by Alteromonas putrefaciens and Pseudomonas spp. and so was the spoilage flora after storage in air (together 62-95% of the flora: all temperatures). Alteromonas putrefaciens predominated slightly at 2 degrees C to 15 degrees C, while Pseudomonas spp. dominated at 0 degrees C. The Pseudomonas flora was mainly split between Ps. fragi , Ps. fluorescens and a heterogenous group of unidentified Pseudomonas spp. The proportions were not influenced by temperature. In 100% CO2 at the time of spoilage the flora consisted of a significant number of Lactobacillus spp. Below 4 C the domination was almost complete while at 10 degrees C and 15 degrees C. Enterobacteriaceae, Vibrionaceae and Alt. putrefaciens was also found. It was concluded that the microbiological shelf-life of herring fillets is improved by refrigeration storage in 100% CO2 but for good results the temperature should not exceed 2 degrees C.  相似文献   

15.
Previous studies have shown that low pressure creates a low oxygen controlled atmosphere that can kill stored-product insects. The current study was conducted to determine the mortality of life stages of the cowpea weevil, Callosbruchus maculatus (F.) (Coleoptera: Bruchidae), exposed to different low pressures and temperatures for various exposure periods. The adults were the most susceptible life stage to low pressure; 99% mortality was achieved within 0.8 h at 32.5 mmHg, 30 degrees C. The pupae were the most tolerant life stage to low pressure, requiring exposure periods between 28.98 and 153.20 h at temperatures of 20-35 degrees C to achieve 99% mortality. Mortality increased with exposure time and also with increasing temperature in all life stages. Early stage eggs (3 h old) and late stage eggs (48 h old) experienced higher mortality (values for LT99 of 42.331 and 46.652 h, respectively) compared with intermediate aged eggs (24 h old; LT99 of 74.735 h) under the same conditions of low pressure and temperature. Dried beans, including cowpea, Vigna unguiculata (Walp.), are currently protected with fumigants. Application of low pressure as a pest management tool represents a potential nonchemical alternative to fumigants such as methyl bromide and phosphine for controlling the cowpea weevil and related bruchids.  相似文献   

16.
Bioassays were carried out under controlled conditions (27 +/- 2 degrees C, 80 +/- 5% RH, and a photoperiod of 12:12 [L:D] h) to evaluate the effect of eight strains of the entomopathogenic fungus Beauveria bassiana upon larvae, pupae, and adult females of the Mexican fruit fly, Anastrepha ludens (Loew). Mortality of the immature stages was low, 2-8% in larvae and 0% in pupae. However, very high levels of mortality were obtained for adult flies, with values of 100, 98, and 98% for the strains Bb16, Bb24, and Bb26, respectively. LC50 values for these three strains ranged from 3.12 x 10(6) to 9.07 x 10(6) conidia/ml. Lethal time 50 (LT50) was 2.8, 3.7, and 4.2 d for Bb16, Bb26, and Bb24 strains, respectively, with an average LT50 of 4.4 d across all strains. The fungal mycelium emerged through the soft parts of the exoskeleton, such as the wing bases, mouth, intersegmental regions of the legs, and membranous regions of the abdomen, coxae, and neck. Maximum percentage sporulation ranged from 66.4 to 74.7% for the three most virulent strains.  相似文献   

17.
One widely accepted explanation of injury from slow freezing is that damage results when the concentration of electrolyte reaches a critical level in partly frozen solutions during freezing. We have conducted experiments on human red cells to further test this hypothesis. Cells were suspended in phosphate-buffered saline containing 0-3 M glycerol, held for 30 min at 20 degrees C to permit solute permeation, and frozen at 0.5 or 1.7 degrees C/min to various temperatures between -2 and -100 degrees C. Upon reaching the desired minimum temperature, the samples were warmed at rates ranging from 1 to 550 degrees C/min and the percent hemolysis was determined. The results for a cooling rate of 1.7 degrees C/min indicate the following: (a) Between 0.5 and 1.85 M glycerol, the temperature yielding 50% hemolysis (LT50) drops slowly from -18 to -35 degrees C. (b) The LT50's over this range of concentrations are relatively independent of warming rate. (c) With glycerol concentrations of 1.95 and 2.0 M, the LT50 drops abruptly to -60 degrees C and to below -100 degrees C, respectively, and becomes dependent on warming rate. The LT50 is lower with slow warming at 1 degree C/min than with rapid. With still higher concentrations (2.5 and 3.0 M), there is no LT50, i.e., more than 50% of the cells survive freezing to-100 degrees C. Results for cooling at 0.5 degrees C/min in 2 M glycerol were similar except that the LT50s were some 10-20 degrees C higher. A companion paper (Rall et al., Biophys. J. 23:101-120, 1978) examines the relation between survival and the concentrations of salts produced during freezing.  相似文献   

18.
We determined the food source and water balance properties of the hissing-cockroach mite, Gromphadorholaelaps schaeferi. The food source for mites was identified using Evans blue dye by direct injection into a fasting host cockroach, Gromphadorhina portentosa, or by incorporation into cockroach food. No coloration was observed in mites on dye-injected cockroaches, but coloration was present in mites when only the food for the cockroaches had been stained. Thus, the mites are scavengers of cockroach food, and are not parasitic as previously thought. Our results demonstrate that the mites can absorb water from the air anywhere between 0.84 and 0.93 a v (%RH/100), and wax-block experiments revealed that the mouth is the site of uptake. The mites are normally clumped together on the host, typically in between the cockroach's legs and around the spiracles. Water loss rates for mites in groups (0.16% h-1) were far lower than for isolated mites (0.30% h-1), suggesting a group effect with regard to water balance. Above the transition temperature of 30°C rate of water loss was rapid. The sites occupied by mites on the cockroach's body seem to be highly specific for feeding and absorption of water vapour.  相似文献   

19.
Developmental rate and survivorship of small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), life stages were measured across different temperatures (21, 25, 28, 32 and 35 degrees C) and diets, which included natural and artificial pollen, honey, and bee pupae. Temperature affected hatch success, time to hatching, and larval growth. Eggs hatched in 61 h at 21 degrees C but in < 22 h at 35 degrees C. Larvae achieved peak weight in < 8 d at 35 degrees C but needed 17 d at 21 degrees C. Diet had comparatively little effect on larval survivorship or maximum weight, although larvae fed only bee pupae had lower survivorship. Access to soil influenced pupation success. Duration of the life stage spent in the soil, during which pupation occurs, was also affected by temperature: adults emerged after 32.7 d at 21 degrees C but after only 14.8 d at 35 degrees C, albeit with high mortality. Minimum temperature for development was estimated at 13.5 degrees C for eggs, and 10.0 degrees C for larvae and pupae. Temperature influenced adult longevity and oviposition: on a honey and pollen diet average adult lifespan was 92.8 d at 24 degrees C but only 11.6 d at 35 degrees C. Beetles lived longer at 28 degrees C or lower but produced the most eggs per female, regardless of diet, at 32 degrees C. Beetle density influenced fecundity: beetles kept at three pairs per vial laid 6.7 times more eggs per female than those kept as single pairs. Overall, beetles fared best at 28-32 degrees C with mortality of all stages highest at 35 degrees C.  相似文献   

20.
Experimental indoxacarb powder and gel baits were evaluated in the laboratory, and a gel bait was evaluated in subsequent field studies against the German cockroach, Blattella germanica (L.). In continuous exposure tests, LT50 values were 1.90 and 1.10 d for 0.25 and 1% indoxacarb powder baits, respectively. However, 0.25% indoxacarb gel bait had an LT50 value of 0.68 d, similar to a 0.05% abamectin gel bait formulated with the same bait base. There was no difference in toxicity between fresh and 7-d-old gel bait deposits. A pyrethroid-resistant strain of German cockroaches was significantly resistant to both abamectin and indoxacarb gel baits. Gel bait contained approximately 40% water, desiccated rapidly at 25-28 degrees C and 30-45% RH, but did not rehydrate when held at 56.7% RH for 3 d. Powder indoxacarb baits contained <1% water and did not desiccate or gain water. Indoxacarb gel bait (0.25%) was relatively nonrepellent (approximately 30%) and had positive maximum performance index values (approximately 100) in Ebeling choice box experiments. In field experiments in cockroach-infested kitchens, the 0.25% indoxacarb gel bait significantly reduced visual counts of German cockroaches approximately 74% at 3 d and >95% at 14 d. Indoxacarb baits are toxic, relatively nonrepellent, and can significantly reduce German cockroach populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号