首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The longevity and reproductive success of newly emerged, unfed adult Aethina tumida Murray assigned different diets (control = unfed; honey-pollen; honey; pollen; empty brood comb; bee brood; fresh Kei apples; and rotten Kei apples) were determined. Longevity in honey-fed small hive beetle adults (average maximum: 167 d) was significantly higher than on other diets. Small hive beetles fed empty brood comb lived significantly longer (average maximum: 49.8 d) than unfed beetles (average maximum: 9.6 d). Small hive beetle offspring were produced on honey-pollen, pollen, bee brood, fresh Kei apples, and rotten Kei apples but not on honey alone, empty brood comb, or in control treatments. The highest reproductive success occurred in pollen fed adults (1773.8 +/- 294.4 larvae per three mating pairs of adults). The data also show that A. tumida can reproduce on fruits alone, indicating that they are facultative parasites. The pupation success and sex ratio of small hive beetle offspring were also analyzed. Larvae fed pollen, honey-pollen, or brood had significantly higher pupation success rates of 0.64, 0.73, and 0.65 respectively than on the other diets. Sex ratios of emerging adults fed diets of pollen or brood as larvae were significantly skewed toward females. Because small hive beetle longevity and overall reproductive success was highest on foodstuffs located in honey bee colonies, A. tumida are efficient at causing large-scale damage to colonies of honey bees resulting in economic injury for the beekeeper. Practical considerations for the control of A. tumida are briefly discussed.  相似文献   

2.
Laboratory studies were conducted on certain aspects of biology ofDiadegma semiclausum Hellén, a larval parasite of a crucifer pest,Plutella xylostella (L.). Within the range of 15°C to 35°C, the higher temperature, the shorter was the duration of larval and adult stages. Egg hatching and adult emergence were high at 15°C to 30°C but were significantly reduced at 35°C. The higher the temperature, the higher was the proportion of males produced. Temperature threshold was 5.74°C for eggs, 3.80°C for larvae, 5.91°C for pupae and 6.60°C for adults.D. semiclausum oviposition in the first threeP. xylostella larval instars produced more parasite males than females but oviposition in the fourth instar produced significantly more females than males. Parasite adults tended to emerge from their pupae from 06∶00 to 09∶00 hours although some emerged at other hours during the photophase. Adult longevity and production of eggs increased when adults were provided with a food source (honey) compared with no food or provision of water alone. Parasite adults survived and laid eggs for 28 days when provided with food but for only three days when deprived of food.  相似文献   

3.
Two kinds of experiments were conducted with Aethina tumida Murray larvae over four temperatures: "consumption" experiments, in which larvae and diet were weighed to determine food consumption rates under conditions of unlimited food and few conspecifics; and "competition" experiments, in which varying numbers of larvae were presented with the same amount of honey and pollen diet, and larval weight at final instar was used to determine competition effects. In consumption experiments temperature, diet and their interaction all had significant effects on the ratio of larval weight to the weight of food consumed, which was higher at 24 degrees C than at any other temperature. In competition experiments, three relationships were examined and modeled: that between the number of larvae per experimental unit and the average weight of those larvae; that between average larval and adult weights; and that between average adult weight and survivorship to adult (emergence rate). An exponential decay function was fit to the relationship between number of larvae per experimental unit and their average weight. Average adult weight was linearly correlated with larval weight. Likewise, emergence rates for adults < 11.6 mg in weight were linearly correlated with adult weights, but no significant relationship was observed for heavier adults. Using these relationships, the reproductive potential for A. tumida were estimated for a frame of honey and pollen. Information on resource acquisition by A. tumida will be useful in evaluating the impact of different factors on beetle population dynamics, such as bee hygienic behavior or control strategies used by the beekeeper.  相似文献   

4.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

5.
As the main source of lipids and proteins in honey bees, pollen is a major nutrient provider involved in development and health and has been studied for tolerance stimulation against pathogens and parasites. In the case of Varroa destructor Anderson & Trueman (Acari, Mesostigmata: Varroidae) parasitization, the lack of a complete laboratory system to rear both the bee larva and the acarian parasite limited the studies concerning larval nutrition effects on the bee tolerance and resistance against varroatosis. Due to the development of this complete rearing protocol, we managed to feed young honey bee larvae with pollen supplemented solutions and to study the effect on their later development under parasitism conditions. In our experimental conditions, pollen influences neither the deformity rate, nor the survival of bees both parasitized and unparasitized. However, pollen extract supplementation seems to significantly impact the weight of the spinning bee larvae without having an effect on the physiological weight loss during pupation, so the differences found at the larval stage remain the same as at emergence. Varroa has a deleterious effect on bee pupae and led to a steady increase of the physiological weight loss experienced during metamorphosis. Interestingly, this ponderal loss associated with Varroa parasitization seems to be reduced in the polyfloral pollen supplementation condition. Altogether, this work is to our knowledge the first to study in laboratory conditions the impact of larval nutrition on the tolerance to parasitism. A diverse pollen diet may be beneficial to the bees’ tolerance against V. destructor parasitism.  相似文献   

6.
The population dynamics of the honey bee pest Aethina tumida Murray (small hive beetle) have been studied in the United States with flight and Langstroth hive bottom board traps baited with pollen dough inoculated with a yeast Kodamaea ohmeri associated with the beetle. However, little is known about the population dynamics of the beetle in its native host range. Similarly baited Langstroth hive bottom board traps were used to monitor the occurrence and seasonal abundance of the beetle in honey bee colonies at two beekeeping locations in Kenya. Trap captures indicated that the beetle was present in honey bee colonies in low numbers all year round, but it was most abundant during the rainy season, with over 80% trapped during this period. The survival of larvae was tested in field releases under dry and wet soil conditions, and predators of larvae were identified. The actvity and survival of the beetle were strongly influenced by a combination of abiotic and biotic factors. Larval survival was higher during wet (28%) than dry (1.1%) conditions, with pupation occurring mostly at 0-15 cm and 11-20 cm, respectively, beneath the surface soil during these periods. The ant Pheidole megacephala was identified as a key predator of larvae at this site, and more active during the dry than wet seasons. These observations imply that intensive trapping during the rainy season could reduce the population of beetles infesting hives in subsequent seasons especially in places where the beetle is a serious pest.  相似文献   

7.
A transgenic corn event (MON 863) has been recently developed by Monsanto Company for control of corn rootworms, Diabrotica spp. (Coleoptera: Chrysomelidae). This transgenic corn event expresses the cry3Bb1 gene derived from Bacillus thuringiensis (Berliner), which encodes the insecticidal Cry3Bb1 protein for corn rootworm control. A continuous feeding study was conducted in the laboratory to evaluate the dietary effect of MON 863 pollen expressing the Cry3Bb1 protein on the survival, larval development, and reproductive capacity of the non-target species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). First instar C. maculata (less than 24 h old) and newly emerging adults (less than 72 h old) were fed individually on a diet mixture containing 50% of MON 863 pollen, non-transgenic (control) corn pollen, bee pollen (a component of normal rearing diet), or potassium arsenate-treated control corn pollen. In the larval tests, 96.7%, 90.0%, and 93.3% of C. maculata larvae successfully pupated and then emerged as adults when fed on MON 863 pollen, non-transgenic corn pollen, and bee pollen (normal rearing) diets, respectively. Among the larvae completing their development, there were no significant differences in the developmental time to pupation and adult emergence among the transgenic corn pollen, non-transgenic corn pollen, and bee pollen diet treatments. All larvae fed on arsenate treated corn pollen diet died as larvae. For tests with adults, 83.3%, 80.0%, and 100% of adult C. maculata survived for the 30 days of the test period when reared on diets containing 50% of MON 863 pollen, non-transgenic corn pollen, and bee pollen respectively. While the adult survival rate on MON 863 pollen diet was significantly less than that on the bee pollen diet, there was no significant difference between the MON 863 and non-transgenic corn pollen treatments. During the period of adult testing, an average of 77, 80, and 89 eggs per female were laid by females fed on the MON 863 pollen, control corn pollen, and bee pollen, respectively; no significant differences were detected in the number of eggs laid among these treatments. These results demonstrate that when offered at 50% by weight of the dietary component, transgenic corn (MON 863) pollen expressing Cry3Bb1 protein had no measurable negative effect on the survival and development of C. maculata larvae to pupation and adulthood nor any adverse effect on adult survival and reproductive capacity. Relevance of these findings to ecological impacts of transgenic Bt crops on non-target beneficial insects is discussed.  相似文献   

8.
The small hive beetle (Aethina tumida Murray) is a scavenger and facultative predator in honey bee colonies, where it feeds on pollen, honey, and bee brood. Although a minor problem in its native Africa, it is an invasive pest of honey bees in the United States and Australia. Adult beetles enter bee hives to oviposit and feed. Larval development occurs within the hive, but mature larvae leave the hive to pupate in soil. The numbers leaving, which can be estimated by trapping, measure the reproductive success of adult beetles in the hive over any given period of time. We describe a trap designed to intercept mature larvae as they reach the end of the bottom board on their way to the ground. Trap efficiency was estimated by releasing groups of 100 larvae into empty brood boxes and counting the numbers trapped. Some larvae escaped, but mean efficiency ranged from 87.2 to 94.2%. We envision the trap as a research tool for study of beetle population dynamics, and we used it to track numbers of larvae leaving active hives for pupation in the soil. The traps detected large increases and then decreases in numbers of larvae leaving colonies that weakened and died. They also detected small numbers of larvae leaving strong European and African colonies, even when no larvae were observed in the hives.  相似文献   

9.
哈尔滨地区大猿叶虫发育历期与生物学特性   总被引:4,自引:0,他引:4  
在哈尔滨对白菜上的大猿叶虫Colaphellus bowringi Baly的生活史和生物学习性进行观察研究。结果表明,大猿叶虫在哈尔滨地区绝大多数个体1年发生1代,少部分个体1年发生2代。主要以成虫入土在2~27cm土层中滞育越冬。越冬成虫翌年4月下旬开始出土活动。第1代发生在5上旬至7月上旬,第2代发生于6月中旬至7月中旬。所有成虫在7月下旬以后均滞育越冬。在25℃条件下,雌虫产卵期为6~55d,平均为30.95d,单雌平均产卵量为454.9粒。在25℃各虫态的发育历期为:卵(4.46±0.33)d,幼虫(8.22±0.26)d,蛹(4.17±0.22)d。各虫态发育起点温度卵为10.80℃,幼虫为10.95℃,蛹为9.79℃;有效积温卵为64.82日.度,幼虫为117.37日.度,蛹为64.36日.度。  相似文献   

10.
The biology of the weevil Hylobitelus xiaoi Zhang was studied in both field and laboratory in Shangyou, Jiangxi Province, China. This species required 2 yr to complete one generation with overwintering by adults in pupal chambers and larvae in galleries in the bark of host trees. Adults emerged from early March to early April and fed on the inner bark of branches of the trees. Adults fly little. Adults exhibited a diel periodicity, climbing up the trees around sunset and returning to the tree base the next morning. The mean preovipostion period was 46 d. Oviposition commenced in early May and ended in late August. The average fecundity per female was 36 eggs. Overwintered adult females and males lived 208 and 227 d, respectively. At 25 degrees C, the mean egg incubation period was 13 d. In the field, egg hatch occurred in 12-15 d with 83% survival. There were five to seven instars. At 25 degrees C, duration of the larval stage averaged 129 d. Pupation commenced in late August. At 25 degrees C, pupation averaged 20 d. In the field, pupation required 20-26 d. Transformation to adults occurred from late September to October. New adults remained in the pupal chambers until the next year. Infection by Beauveria bassiana Vuill. occurred in 0.8% of the pupae and 8.8% of the overwintered adults.  相似文献   

11.
Several studies have documented local adaptation by sedentary insects to individual phenotypes of their host plants. Here, I examined whether a similar phenomenon could be found in a mobile, specialized insect, the sumac flea beetle. Previous work has shown that sumac individuals differ in their suitability as hosts for these beetles and that differences have both an environmental and a genetic basis. Using beetle populations collected as eggs from eight different sumac clones along an east-west transect, a reciprocal transfer experiment was conducted to determine whether there was any evidence for local adaptation by beetles to individual plant clones or to site. Variables examined were larval survivorship past first instar, development time, weight at pupation and patterns of predation by enemies. While no evidence for local adaptation was found, there were significant effects of plant clone on which larvae developed, origin of the larval population and the interaction of these effects on larval performance. For larval weight at pupation, there was also some indication that trade-offs may exist in ability of larvae to use different host plant clones. In addition, there were significant environmental effects on several measures of larval performance. Predation rates differed by plant clone, but not by site or with respect to origin of larvae. While no evidence for local adaptation was found in this study, prerequisites for finding such patterns may exist in this system. Received: 23 May 1996 / Accepted: 26 September 1996  相似文献   

12.
Inoda T 《Zoological science》2003,20(3):377-382
Mating season and embryonic development of the predaceous diving beetles, Dytiscus sharpi, (Coleoptera; Dytiscidae) were observed under artificial breeding conditions. Female and male adult insects started mating from November to March and gave first instar larvae mainly in April. When the mating was artificially delayed until February, first instar larvae appeared from the end of March to the middle of May. I also investigated the effects of temperature on larval development. Apparent hatchability of eggs was not affected by high temperature, however, their normal development after hatching was significantly interfered. Most of the first instar larvae kept at 20-25 degrees C from before hatching died within one day after hatching. By contrast, juveniles kept outdoors (7.0-20.9 degrees C) could develop at least until second instar larvae. Temperature >23 degrees C after hatching had no effects on larval development. From these observations, it was concluded that the reproduction strategy of Dytiscus sharpi, i.e. mating in late autumn and hatching in early spring would be the reasonable results of adaptation to the warm habitats where they are collected.  相似文献   

13.
Resin glycoside material extracted from the periderm tissue of storage roots from sweetpotato, Ipomoea batatas (L.) Lam., was bioassayed for effects on survival, development, and fecundity of the diamondback moth, Plutella xylostella (L.). The resin glycoside was incorporated into an artificial diet and fed to P. xylostella larvae. First instars were placed individually into snap-top centrifuge vials containing artificial diet with one of six concentrations of resin glycoside material (0.00, 0.25, 0.50, 1.00, 1.50, and 2.00 mg/ml). Each replication consisted of 10 individuals per concentration, and the experiment was repeated 13 times. Vials were incubated at 25 degrees C and a photoperiod of 14:10 (L:D) h in a growth chamber. After 6 d, surviving larvae were weighted and their sex determined, then returned to their vials. Later, surviving pupae were weighed and incubated at 25 degrees C until moths emerged. Females were fed, mated with males from the laboratory colony, and allowed to lay eggs on aluminum foil strips. Lifetime fecundity (eggs/female) was measured. There were highly significant negative correlations between resin glycoside levels and survival, and between glycoside levels and larval weight after 6 d of feeding. For larvae that lived at least 6 d, there was no additional mortality that could be attributed to the resin glycoside material. However, there was a significant positive correlation between glycoside dosages and developmental time of larvae (measured as days until pupation). Lifetime fecundity also was negatively affected at sublethal doses. Resin glycosides may contribute to the resistance in sweetpotato breeding lines to soil insect pests.  相似文献   

14.
Amblyseius (Neoseiulus) californicus is an indigenous mite in Japan that feeds on many spider mite species. We evaluated the development, survivorship and life-history parameters of A. californicus on a diet of eggs of Tetranychus urticae (red form). More than 97.3% of A. californicus eggs hatched and more than 81.6% of newly hatched larvae attained maturity at temperatures between 15 and 35 degrees C. Females oviposited at 37.5 degrees C, but no eggs hatched. At 40 degrees C, no females laid eggs. The lower threshold temperature from egg to oviposition was 10.3 degrees C and the thermal constant was 86.2 degree-days. Based on these data, the maximum number of generations that could complete development in a year under field conditions in Ibaraki, central Japan, would be between 21 and 28. At 25 degrees C, females laid a mean of 41.6 eggs during a mean oviposition period of 19.4 days. The intrinsic rates of natural increase (rm) were 0.173 at 20 degrees C, 0.274 at 25 degrees C and 0.340 at 30 degrees C.  相似文献   

15.
Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting.Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees.Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage.The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may be undergoing dynamic succession.  相似文献   

16.
The ecologically and economic important honey bee (Apis mellifera) is a key non-target arthropod species in environmental risk assessment (ERA) of genetically modified (GM) crops. Honey bee larvae are directly exposed to transgenic products by the consumption of GM pollen. But most ERA studies only consider responses of adult bees, although Bt-proteins primarily affect the larval phases of target organisms. We adopted an in vitro larvae rearing system, to assess lethal and sublethal effects of Bt-pollen consumption in a standardized eco-toxicological bioassay. The effects of pollen from two Bt-maize cultivars, one expressing a single and the other a total of three Bt-proteins, on the survival and prepupae weight of honey bee larvae were analyzed. The control treatments included pollen from three non-transgenic maize varieties and of Heliconia rostrata. Three days old larvae were fed the realistic exposure dose of 2 mg pollen within the semi-artificial diet. The larvae were monitored over 120 h, until the prepupal stage, where larvae terminate feeding and growing. Neither single nor stacked Bt-maize pollen showed an adverse effect on larval survival and the prepupal weight. In contrast, feeding of H. rostrata pollen caused significant toxic effects. The results of this study indicate that pollen of the tested Bt-varieties does not harm the development of in vitro reared A. mellifera larvae. To sustain the ecosystem service of pollination, Bt-impact on A. mellifera should always be a crucial part of regulatory biosafety assessments. We suggest that our approach of feeding GM pollen on in vitro reared honey bee larvae is well suited of becoming a standard bioassay in regulatory risk assessments schemes of GM crops.  相似文献   

17.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

18.
Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax - fluvalinate, coumaphos, chlorothalonil, and chloropyrifos - tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common ‘inert’ ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.  相似文献   

19.
The rearing of Galleria mellonella L. in laboratory is important for multiplication of entomopathogenic nematodes, mandatory for biological control studies. The objective of this study was to evaluate the effect of three thermal profiles on development stages of this insect, allowing synchronization of cycle production. Two distinct rearing phases were done: firstly, using nucleous of incubation for development of eggs and, secondly, using circular-aluminum manifolds for development of larvae and pupae. The time necessary for development of the immature stages decreased with higher temperatures. Incubation periods lasted 13.4 days at 22 degrees C, 8.3 at 27 degrees C and 6.8 days at 32 degrees C, while periods for larvae development lasted 40.4, 27.2, and 23.4 days, respectively, for the same temperatures. Development to pupal stage was observed 18.2, 15.0, and 12.2 days, respectively, for the same temperatures. Larval survival was higher at 32 degrees C, however embryonic stages and pupae survival were higher at 27 degrees C. and 22 degrees C, respectively. The threshold temperature was 11.209167 degrees C for the embryonic development stage, 7.695869 degrees C for larval stage, and 1.943050 degrees C for pupal stage of G. mellonella. Thermal constants were 138.380533 DG (degree day) for egg, 554.968830 DG for larvae, and 369.054080 DG for pupae.  相似文献   

20.
Temperature tolerance was investigated in nine populations of Plutella xylostella Linnaeus from tropical and temperate regions of Asia. At all rearing temperatures between 15 and 35 degrees C, no clear differences were observed in female egg production or larval development between tropical and temperate populations. Thus, tropical populations did not show a high-temperature tolerance superior to that of the temperate populations. In all populations, the net reproductive rate (number of new females born per female) largely depended on the number of eggs laid per female, and egg production significantly decreased with increasing temperature (P < 0.001). Larval developmental rate also showed a significant positive correlation with temperature (P < 0.001). Per cent hatch of eggs and larval survival did not show a significant correlation with temperature: hatching was constant between 15 and 32.5 degrees C, but considerably lower at 35 degrees C. Larval survival was similar between 15 and 30 degrees C, appreciably lower at 32.5 degrees C and declined to 0% at 35 degrees C. Based on these results, environmental conditions under which P. xylostella can maintain a high population density throughout the year in tropical and subtropical regions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号