首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
We used monoclonal antibodies (MAbs) to examine the antigenic specificity and biologic function of several Chlamydia trachomatis antigens. Thirteen distinct MAbs to eight C. trachomatis antigens were produced. Six MAbs reacted with unique epitopes on the major outer membrane protein (MOMP) and two of these had neutralizing activity. MAbs were produced to each of the chlamydial antigens with molecular masses of 10, 29, 32, 57, 60, 70, and 75 kilodaltons (kDa). These MAbs showed species and genus specificity in an immunoblot assay. None of the MAbs had neutralizing activity. The epitopes recognized on MOMP, 29-, and 10-kDa (presumably lipopolysaccharide) antigens were surface exposed. MAbs to the 75-kDa, 57-kDa, and MOMP antigens were used for immunoaffinity purification of these antigens to produce monospecific antisera in mice. With polyclonal sera, we found that the 75-kDa antigen was also immunoaccessible and that antibody to MOMP and 75-kDa antigens neutralized C. trachomatis infectivity. We conclude that, in addition to MOMP and lipopolysaccharide, antigens with molecular masses of 75 and 29 kDa are surface exposed. Antibodies to MOMP and 75-kDa antigens can neutralize the organism in vitro.  相似文献   

2.
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. Chlamydial major outer membrane protein (MOMP) can induce strong cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of MOMP was analyzed using computer-assisted techniques to scan B-cell epitopes, and three possible linear B-cell epitopes peptides (VLKTDVNKE, TKDASIDYHE, TRLIDERAAH) with high predicted antigenicity and high conservation were investigated. The DNA coding region for each potential epitope was cloned into pET32a(+) and expressed as Trx-His-tag fusion proteins in Escherichia coli. The fusion proteins were purified by Ni-NTA agarose beads and followed by SDS-PAGE and western blot analysis. We immunized mice with these three fusion proteins. The sera containing anti-epitope antibodies from the immunized mice could recognize C. trachomatis serovars D and E in ELISA. Antisera of these fusion proteins displayed an inhibitory effect on invasion of serovar E by in vitro neutralization assays. In addition, serum samples from convalescent C. trachomatis-infected patients were reactive with the epitope fusion proteins by western blot assay. Our results showed that the epitope sequences selected by bioinformatic analysis are highly conserved C. trachomatis MOMP B-cell epitopes, and could be good candidates for the development of subunit vaccines, which can be used in clinical diagnosis.  相似文献   

3.
The surface exposure of computer-predicted, linear B-cell epitopes on the major outer-membrane protein (MOMP) of Chlamydia trachomatis serovar B was assessed using antibodies raised against synthetic peptides in conjunction with immunogold transmission electron microscopy. Several of the chosen peptides elicited antibodies which reacted with both denatured and native MOMP. The majority of the exposed epitopes were found within the variable segments of MOMP. For each of the epitopes identified, the extent of their surface accessibility varied both among individual organisms and different developmental forms. Evidence for two distinct subspecies-specific epitopes within VS4 is presented.  相似文献   

4.
HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein (MOMP) of Chlamydia trachomatis are present in the peripheral blood of humans who acquired genital tract infections with the organism. Three HLA-A2-restricted epitopes and two HLA-B51-restricted epitopes were identified in serovar E-MOMP. One of the five epitopes spans a variable segment of MOMP and is likely a serovar E-specific epitope. The other four epitopes are localized in constant segments and are C. trachomatis species specific. CTL populations specific for one or more of the four constant segment epitopes were isolated from all 10 infected subjects tested, regardless of infecting serovars, but from only one of seven uninfected subjects tested. The CTLs failed to recognize corresponding peptides derived from Chlamydia pneumoniae MOMP, further suggesting that they indeed resulted from genital tract infections with C. trachomatis. Significantly, ME180 human cervical epithelial cells productively infected with C. trachomatis were killed by the MOMP peptide-specific CTLs. Further investigations of the ability of such CTLs to lyse normal infected epithelial cells and their presence at inflamed sites in the genital tract will help understand the protective or pathological role of CTLs in chlamydial infections. The MOMP CTL epitopes may be explored as potential components of a subunit vaccine against sexually transmitted diseases caused by C. trachomatis. Moreover, the knowledge provided here will facilitate studies of HLA class I pathways of chlamydial Ag processing and presentation in physiologically relevant human APCs.  相似文献   

5.
Fragments of the gene encoding the major outer membrane porin protein (MOMP) of Chlamydia trachomatis serovar L1 were ligated into the pUC plasmid vectors to give a series of overlapping recombinants expressing MOMP from the lac promoter. Induction of this promoter with IPTG leads to high-level expression of the recombinant porin protein. Electron microscopy shows the presence of insoluble inclusions within the Escherichia coli host cells. Probing the expressed MOMP fragments with a set of monoclonal antibodies permitted localization of the four binding sites (epitopes) of primary-sequence-dependent monoclonal antibodies that exhibit genus-, species-, subspecies- and type (serovar)-specific reactivities.  相似文献   

6.
C Sayada  E Denamur  J Elion 《Gene》1992,120(1):129-130
The complete nucleotide sequence of the gene omp1 encoding the major outer membrane protein (MOMP) of Chlamydia trachomatis serovar Da was determined following amplification by the polymerase chain reaction. The most closely related complete sequence published to date is that encoding the C. trachomatis L1 MOMP. When the L1 and Da MOMP deduced amino acid (aa) sequences were compared, 16 single-aa differences located mostly in the variable domains I, II, and IV were detected. These regions contain the B-cell epitopes. Additional differences were found in the constant domains I and II, thought to participate in the T-cell response.  相似文献   

7.
We recently identified HLA class I-presented epitopes in the major outer membrane protein (MOMP) of Chlamydia trachomatis that elicit CTL responses in human genital tract infections. T cells possessing cytolytic activities specific for these epitopes could be detected following in vitro stimulation of peripheral blood CD8(+) T cells with peptides. In the present study we used HLA-A2 tetramers for detailed characterization of MOMP-specific CTL responses. Ex vivo tetramer analysis detected MOMP-specific T cells in the peripheral blood of infected individuals at significant frequencies (0.01-0.20% of CD8(+) T cells). After in vitro stimulation with peptides, the frequencies of MOMP peptide-specific T cells increased up to 2.34% of CD8(+) T cells in bulk cultures. In contrast, HLA-A2/MOMP tetramer-binding T cells were virtually undetectable in the peripheral blood from uninfected individuals, either ex vivo or after 3 wk of in vitro peptide stimulation of their T cells. Magnetically sorted, tetramer-bound T cells specifically lysed peptide-pulsed targets as well as C. trachomatis-infected epithelial cells with nearly 50-fold greater per cell efficiency than that of unsorted populations. This study provides conclusive evidence of in vivo induction of HLA class I-restricted CD8(+) CTL responses to C. trachomatis MOMP. Direct detection of these cells with tetramers will allow their further characterization without prior manipulation and facilitate monitoring of CTL responses during infections and in immunization trials with MOMP-based vaccines.  相似文献   

8.
The Chlamydia trachomatis major outer membrane protein (MOMP) is the quantitatively predominant surface protein which has important functional, structural and antigenic properties. We have cloned and overexpressed the MOMP in Escherichia coli. The MOMP is surface exposed in C. trachomatis and capable of eliciting protective antibodies in infected hosts, and therefore has potential as a candidate vaccine to prevent infection with this significant human pathogen. The recombinant MOMP clone, L2rMOMP, contained the entire MOMP gene including the encoded leader sequence. Large quantities of chlamydial MOMP were expressed, some of which was processed and translocated to the E. coli surface. Surface localization of the MOMP was demonstrated by the binding of anti-MOMP monoclonal antibodies to the surface of the induced clone, and was visualized by fluorescence and electron microscopy. The induction of MOMP expression had a rapidly lethal effect on the L2rMOMP E. coli clone. Although no genetic system exists for Chlamydia, development of a stable, inducible E. coli clone which overexpresses the chlamydial MOMP permits a study of the biological properties of the MOMP, including the contribution of the MOMP variable segments to the topographical interactions which determine the antigenic structure responsible for human immune response.  相似文献   

9.
Sequences of the major outer membrane protein (MOMP) gene (ompA) and the outer membrane complex B protein gene (omcB) from Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci were analyzed for evidence of intragenic recombination and for linkage equilibrium. The Sawyer runs test, compatibility matrices, and index of association analyses provided substantial evidence that there has been a history of intragenic recombination at ompA including one instance of interspecies recombination between the C. trachomatis mouse pneumonitis strain and the C. pneumoniae horse N16 strain. Although none of these methods detected intragenic recombination within omcB, differences in divergence reported in earlier studies suggested that there has been intergenic recombination involving omcB, and the analyses presented in this study are consistent with this. For C. trachomatis, index-of-association analyses suggested a higher degree of recombination for C class than for B class strains and a higher degree of recombination in the downstream half of ompA. In concordance with these findings, many significant breakpoints were found in variable segments 3 and 4 of MOMP for the recombinant strains D/B120, G/UW-57, E/Bour, and LGV-98 identified in this study. We provide examples of how genetic diversity generated by repeated recombination in these regions may be associated with evasion of immune surveillance, serovar-specific differences in tissue tropism, and persistence.  相似文献   

10.
A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity.  相似文献   

11.
The major outer-membrane protein (MOMP) of Chlamydia trachomatis is a promising candidate antigen for chlamydial vaccine development. We have sequenced the MOMP genes for a serovar A and a serovar B isolate and have compared these new sequences with those already reported. Intra-serovar changes in the inferred amino acid sequences of the surface-exposed variable segments known to be responsible for binding of neutralizing antibody were observed. Nevertheless, epitope mapping with solid-phase peptides showed that these intra-serovar changes did not affect the binding of serovar- and subspecies-specific, potentially protective antibodies. Variable segment 1 of C. trachomatis serovar A contained two adjacent antibody-binding sites, one of which was C-subspecies specific while the other was serovar A specific. Therefore the subspecies binding site for C-complex organisms is in variable segment 1, whilst that for B-complex organisms is in variable segment 4. This work shows that MOMP sequences are relatively stable within the serovar categorization for isolates taken decades apart from different continents. Within a given serovar, however, limited interchange of functionally related amino acids may occur without impairing the binding of serovar-specific antibody.  相似文献   

12.
The cell surfaces of two Chlamydia trachomatis serovars were explored by immune electron microscopy with monoclonal antibodies that recognize a number of chlamydial outer-membrane components. Species, subspecies and serovar-reactive epitopes on the major outer-membrane protein (MOMP) of a lymphogranuloma venereum biovar strain, L2/434/Bu, and a trachoma biovar strain, F/UW-6/Cx, were exposed on the surfaces of both elementary bodies (EBs) and reticulate bodies (RBs). Three epitopes on MOMP were inaccessible on EBs and RBs of both strains. These included a genus-reactive, species-reactive, and a subspecies-reactive epitope. In contrast, genus-specific epitopes on lipopolysaccharide (LPS) were not detected on the EB surface, but were clearly expressed on RBs of both L2/434/Bu and F/UW-6/Cx chlamydiae. Antibodies specific for the 60 kDa and 12 kDa 'cysteine-rich' outer-membrane proteins did not react with surface epitopes on either EBs or RBs. These data provide evidence that MOMP is a major surface antigen of both morphological forms, whereas some portions of the LPS molecule are exposed on the RB surface but become inaccessible to antibody after conversion to the infectious EB form.  相似文献   

13.
The complete nucleotide sequence encoding the major outer membrane protein (MOMP) of Chlamydia psittaci strain A22/M, responsible for enzootic abortion of ewes (EAE), has been determined. An 800bp Eco RI/ Xba I fragment containing a portion of the MOMP coding sequence from C. trachomatis serovar L1 was used to probe a λL47.1 genomic library constructed from DNA obtained from C. psittaci EAE A22/M. The recombinant L47.1/EA1 was selected and contained the entire C. psittaci MOMP gene within a 7.5 kb Bam HI fragment. The DNA sequence revealed an open reading frame encoding 402 amino acids, including a 22 amino acid signal peptide, which exhibited 17/22 conservation with the signal peptide of C. trachomatis MOMP. The calculated molecular mass of the C. psittaci MOMP was 43 kDa. A comparison of the MOMP genes of C. psittaci and C. trachomatis revealed only 34% nucleotide sequence homology, but 65% amino acid homology.  相似文献   

14.
The disulfide bond cross-linked major outer membrane protein (MOMP) of the extracellular elementary bodies (EBs) of Chlamydia psittaci was reduced to its monomeric form within 1 h of entry of EBs into host cells by a process which was inhibited by chloramphenicol, while monomeric forms of three cross-linked cysteine-rich proteins could not be detected in Sarkosyl outer membrane complexes at any time in either extracellular or intracellular forms of C. psittaci. Synthesis and incorporation of the MOMP into outer membrane complexes were detected early in the infection cycle (12 h postinfection), while synthesis and incorporation of the cysteine-rich proteins were not observed until reticulate bodies had begun to reorganize into EBs at 20 to 22 h postinfection. By 46 h postinfection, the intracellular population of C. psittaci consisted mainly of EBs, the outer membrane complexes of which were replete with monomeric MOMP and cross-linked cysteine-rich proteins. Upon lysis of infected cells at 46 h, the MOMP was rapidly cross-linked, and infectious EBs were released. The status of the MOMP of intracellular Chlamydia trachomatis was similar to the status of the MOMP of C. psittaci in that the MOMP was largely uncross-linked at 24 and 48 h postinfection, but formed interpeptide disulfide bonds when it was exposed to an extracellular environment late in the developmental cycle. In contrast to C. psittaci, only a fraction of the cross-linked MOMP of infecting EBs of C. trachomatis was reduced by 4 h postinfection, and reduction of the MOMP was not inhibited by chloramphenicol. Exposure of extracellular EBs of C. trachomatis and C. psittaci to dithiothreitol reduced the MOMP but failed to stimulate metabolic activities normally associated with reticulate bodies.  相似文献   

15.
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.  相似文献   

16.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

17.
Twenty one Chlamydia trachomatis reference strains and 40 clinical isolates belonging to the lymphogranuloma venerum (LGV) and trachoma biovars were genotyped by differential restriction mapping of the major-outer-membrane-protein gene (MOMP) obtained by the polymerase-chain reaction (PCR). AluI digestion of the PCR product distinguishes eight MOMP-genotypes corresponding to 8 serovars. Six additional enzymes (NlaIII, CfoI, EcoRI, HinfI, DdeI and FokI) further permit the discrimination of 10 MOMP-genotypes corresponding to the 10 remaining serovars of the species. AluI alone allows direct typing of 78% of the clinical isolates. AluI digestion patterns of mouse C. trachomatis biovar, a C. pneumoniae and two C. psittaci strains, studied for comparison, were clearly distinguishable from one another and from the C. trachomatis LGV and trachoma strains. These results indicate that MOMP genotyping by PCR is a valuable molecular tool for studying C. trachomatis epidemiology.  相似文献   

18.
The major outer-membrane protein (MOMP) of Chlamydia trachomatis is the focus of attention for chlamydial vaccine design, particularly those serovar- and subspecies-specific epitopes which provoke neutralizing immune responses. Selected surface-exposed B-cell epitopes of MOMP, incorporating B-subspecies specificities, were expressed as fusions with LamB, an inducible outer-membrane transport protein of Escherichia coli. These recombinant chlamydial-LamB proteins were correctly transported to the outer membrane of both E. coli and an aro A mutant of Salmonella typhimurium. The immunogenicity of the constructs was investigated in a mouse model of chlamydial salpingitis. After oral immunization, recombinant S. typhimurium were recovered from the livers of mice for up to two weeks, and a serum IgG response was induced both to the Salmonella and to the inserted chlamydial epitopes. By contrast, intravenous inoculation was ineffective. Although these LamB fusions proved only weakly immunogenic, this approach should be useful for investigating the ability of attenuated S. typhimurium vaccines incorporating chlamydial epitopes to stimulate protective mucosal immunity in the mouse model of chlamydial salpingitis.  相似文献   

19.
OBJECTIVE: The aim of this study was to compare and evaluate three methods of DNA extraction for the amplification of Chlamydia trachomatis in uterine cervical samples collected in PreservCyt solution. ThinPrep is the trade name for the slide preparation. METHODS: Thirty-eight samples collected in LCx buffer medium, which were identified as C. trachomatis infected by ligase chain reaction (LCR), were selected for this study. DNA from the PreservCyt samples was extracted by three methods: (i) QIAamp kit, (ii) boiling in Tris-EDTA buffer with Chelex purification, and (iii) Proteinase K digestion with Chelex purification. Sample DNA was tested for the presence of C. trachomatis by PCR using cryptic plasmid research (CTP) primers and major outer membrane protein research momp gene (MOMP) primers. Real-time (LightCycler) PCR for relative C. trachomatis quantification following DNA extraction was performed using primers (Hsp 60) for the 60 kDa heat-shock protein hsp60 gene. RESULTS: Amplification using CTP primers was the most successful with each of the extraction protocols. Boiling in buffer was the least successful extraction method. QIAamp was the best extraction method, yielding the most positives with both the CTP and MOMP primers. Proteinase K-Chelex extraction gave similar sensitivity to QIAamp extraction with CTP primers but lower for MOMP primers. CONCLUSIONS: The DNA extraction method must be carefully selected to ensure that larger PCR amplicons can be successfully produced by PCR and to ensure high sensitivity of detection of C. trachomatis. In this study it was found that the QIAamp extraction method followed by PCR with the CTP primers was the most successful for amplification of C. trachomatis DNA.  相似文献   

20.
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号