首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HLA class I-restricted CD8+ CTLs specific for the major outer membrane protein (MOMP) of Chlamydia trachomatis are present in the peripheral blood of humans who acquired genital tract infections with the organism. Three HLA-A2-restricted epitopes and two HLA-B51-restricted epitopes were identified in serovar E-MOMP. One of the five epitopes spans a variable segment of MOMP and is likely a serovar E-specific epitope. The other four epitopes are localized in constant segments and are C. trachomatis species specific. CTL populations specific for one or more of the four constant segment epitopes were isolated from all 10 infected subjects tested, regardless of infecting serovars, but from only one of seven uninfected subjects tested. The CTLs failed to recognize corresponding peptides derived from Chlamydia pneumoniae MOMP, further suggesting that they indeed resulted from genital tract infections with C. trachomatis. Significantly, ME180 human cervical epithelial cells productively infected with C. trachomatis were killed by the MOMP peptide-specific CTLs. Further investigations of the ability of such CTLs to lyse normal infected epithelial cells and their presence at inflamed sites in the genital tract will help understand the protective or pathological role of CTLs in chlamydial infections. The MOMP CTL epitopes may be explored as potential components of a subunit vaccine against sexually transmitted diseases caused by C. trachomatis. Moreover, the knowledge provided here will facilitate studies of HLA class I pathways of chlamydial Ag processing and presentation in physiologically relevant human APCs.  相似文献   

2.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

3.
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.  相似文献   

4.
Gene MAGE-A3 encodes tumor-specific antigenic peptides recognized by T cells on many tumors. MAGE-A3 peptides presented by HLA class I molecules have been identified using CD8 lymphocytes stimulated with cells that either expressed gene MAGE-A3 or were pulsed with candidate peptides. One antigen identified with the latter method is peptide MAGE-A3(195-203) IMPKAGLLI, presented by HLA-A24 molecules. It has been used to vaccinate advanced cancer patients. Here, we have used HLA/peptide tetramers to detect T cells recognizing this peptide. Their frequency was estimated to be 2 x 10(-8) of the blood CD8 cells in non-cancerous HLA-A24(+) individuals, which is tenfold lower than the reported frequencies of T cells against other MAGE peptides. In the blood of a patient vaccinated with MAGE-A3, the estimated frequency was 5 x 10(-7). Anti-MAGE-3.A24 cytolytic T cell clones were derived, that lysed peptide-pulsed cells with half-maximal effect at the low concentration of 500 pM. However, these CTL did not recognize a panel of HLA-A24(+) tumor cells that expressed MAGE-A3 at levels similar to those found in HLA-A1(+) tumor cells recognized by anti-MAGE-3.A1 CTLs. Furthermore, 293-EBNA cells transfected with MAGE-A3 and HLA-A24 constructs were hardly recognized by the anti-MAGE-3.A24 CTL clones. These results suggest that peptide MAGE-A3(195-203) is poorly processed and is not an appropriate target for cancer immunotherapy.  相似文献   

5.
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS. Though originally believed to be CD4-mediated, additional immune effector mechanisms, including myelin-specific CD8(+) T cells, are now proposed to participate in the pathophysiology of MS. To study the immunologic and encephalitogenic behavior of HLA-A*0201-binding myelin-derived epitopes in vivo, we used a humanized HLA-A*0201-transgenic mouse model. Eight HLA-A*0201-binding peptides derived from myelin oligodendrocyte glycoprotein (MOG), an immunodominant myelin self-Ag, were identified in silico. After establishing their relative affinity for HLA-A*0201 and their capacity to form stable complexes with HLA-A*0201 in vitro, their immunological characteristics were studied in HLA-A*0201-transgenic mice. Five MOG peptides, which bound stably to HLA-A*0201 exhibited strong immunogenicity by inducing a sizeable MOG-specific HLA-A*0201-restricted CD8(+) T cell response in vivo. Of these five candidate epitopes, four were processed by MOG-transfected RMA target cells and two peptides proved immunodominant in vivo in response to a plasmid-encoding native full-length MOG. One of the immunodominant MOG peptides (MOG(181)) generated a cytotoxic CD8(+) T cell response able to aggravate CD4(+)-mediated EAE. Therefore, this detailed in vivo characterization provides a hierarchy of candidate epitopes for MOG-specific CD8(+) T cell responses in HLA-A*0201 MS patients identifying the encephalitogenic MOG(181) epitope as a primary candidate.  相似文献   

6.
Prostate-specific antigen (PSA) is a valuable marker antigen for prostate cancer. Lately considerable interest has been generated in the prospect of developing a vaccine for prostate cancer with PSA-derived peptide epitopes to induce cytotoxic T-cell (CTL) response. We report here that T cells capable of exhibiting PSA epitope-specific effector function-in their native state, i.e, without having to be further stimulated, in vitro-are detectable in more than half of the prostate cancer patients we studied. Ex vivo cultured autologous dendritic cells (DC) were used to present four HLA-A2-binding PSA peptide epitopes to freshly isolated peripheral blood lymphocytes (PBL) from patients and healthy volunteers. Ten out of 14 patients' PBL recognized at least one of the four peptides and 6 out of 10 patients' PBL recognized more than one peptide antigen as measured by IFN-gamma secretion upon stimulation of the PBL with the peptide antigen. Intracytoplasmic cytokine analysis for IFN-gamma in purified CD8(+) cells after stimulation with peptide antigens was tested in 6 patients and this technique demonstrated a similar response. Freshly isolated and purified CD8(+) cells when tested, also recognized the epitopes, as measured by IFN assay, when presented by transporter associated with antigen-processing (TAP) deficient T2 cells in an MHC-I restricted fashion. PBL from 9 normal donors when tested in identical fashion did not show any IFN-gamma production in recognition to the peptide antigens. Interestingly, neither of these CD8(+) T cells having IFN-gamma-producing ability did show any cytolytic activity in their native state against peptide loaded target cells or tumor cells when tested in cytotoxicity assay. In long term cocultures stimulation of purified CD8(+) T cells with matured DC pulsed with PSA peptides generated a PSA-specific CTL response in 4 of 6 patients studied and in 2 of 9 normal donors. While our observations of CTL generation are consistent with the prior reports that have demonstrated that specific CD8(+) CTL could be generated which recognize PSA-derived epitopes by in vitro stimulation by one means or another, this observation that IFN-gamma-producing CD8(+) T cells are present in patients which are antigen experienced, and do not require in vitro stimulation, is novel and has major implications for prostate cancer vaccine preparation.  相似文献   

7.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

8.
The superior ability of dendritic cells (DC) in triggering antigen-specific T cell responses makes these cells attractive tools for the generation of antitumor or antiviral immunity. We report here an efficient retroviral transduction system for the introduction of antigens into DC. A retroviral vector encoding several CTL epitopes in a string-of-beads fashion in combination with the marker gene green fluorescence protein (GFP) was generated. Polyepitope transduced EBV-LCL could be isolated on the basis of GFP expression and were found to be sensitive to lysis by antigen-specific cytotoxic T cells, demonstrating that antigens encoded by the retroviral construct were stably expressed, processed, and presented in the context of HLA class I molecules. CD34(+) cells isolated from G-CSF mobilized peripheral blood were transduced with high efficiency (40-60%) with this retroviral construct. These cells could be considerably expanded in vitro and differentiated into mature DC without loss of the transduced antigen. DC transduced with the polyepitope constructs were able to mount a CTL response against an influenza epitope in the context of HLA-A2, demonstrating the antigen-specific CTL priming capacity of retrovirally transduced DC. Staining of the T cells with tetramers of HLA-A2 and the influenza virus peptide demonstrated a marked antigen-specific CTL enrichment after 2 in vitro stimulations using DC transduced with the polyepitope. However, additional in vitro stimulations of the T cells with transduced DC did not result in a further enrichment of tetramer staining cells.  相似文献   

9.
We previously reported that Tax-specific CD8(+) cytotoxic T lymphocytes (CTLs), directed to single epitopes restricted by HLA-A2 or A24, expanded in vitro and in vivo in peripheral blood mononuclear cells (PBMC) from some adult T-cell leukemia (ATL) patients after but not before allogeneic hematopoietic stem cell transplantation (HSCT). Here, we demonstrated similar Tax-specific CTL expansion in PBMC from another post-HSCT ATL patient without HLA-A2 or A24, whose CTLs equally recognized two newly identified epitopes, Tax88-96 and Tax272-280, restricted by HLA-A11, suggesting that these immunodominant Tax epitopes are present in the ATL patient in vivo.  相似文献   

10.
Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A   总被引:9,自引:0,他引:9  
The role of CD8(+) CTL in protection against tuberculosis in human disease is unclear. In this study, we stimulated the peripheral blood mononuclear cells of bacillus Calmette-Guérin (BCG)-vaccinated individuals with live Mycobacterium bovis BCG bacilli to establish short-term cell lines and then purified the CD8(+) T cells. A highly sensitive enzyme-linked immunospot (ELISPOT) assay for single cell IFN-gamma release was used to screen CD8(+) T cells with overlapping peptides spanning the mycobacterial major secreted protein, Ag85A. Three peptides consistently induced a high frequency of IFN-gamma responsive CD8(+) T cells, and two HLA-A*0201 binding motifs, P(48-56) and P(242-250), were revealed within the core sequences. CD8(+) T cells responding to the 9-mer epitopes were visualized within fresh blood by ELISPOT using free peptide or by binding of HLA-A*0201 tetrameric complexes. The class I-restricted CD8(+) T cells were potent CTL effector cells that efficiently lysed an HLA-A2-matched monocyte cell line pulsed with peptide as well as autologous macrophages infected with Mycobacterium tuberculosis or recombinant vaccinia virus expressing the whole Ag85A protein. Tetramer assays revealed a 6-fold higher frequency of peptide-specific T cells than IFN-gamma ELISPOT assays, indicating functional heterogeneity within the CD8(+) T cell population. These results demonstrate a previously unrecognized, MHC class I-restricted, CD8(+) CTL response to a major secreted Ag of mycobacteria and supports the use of Ag85A as a candidate vaccine against tuberculosis.  相似文献   

11.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

12.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

13.
In a significant proportion of melanoma patients, CTL specific for the melan-A(26/7-35) epitope can be detected in peripheral blood using HLA-A2/peptide tetramers. However, the functional capacity of these CTL has been controversial, since although they prove to be effective killers after in vitro expansion, in some patients they have blunted activation responses ex vivo. We used phenotypic markers to characterize melan-A tetramer(+) cells in both normal individuals and melanoma patients, and correlated these markers with ex vivo assays of CTL function. Melanoma patients with detectable melan-A tetramer(+) cells in peripheral blood fell into two groups. Seven of thirteen patients had a CCR7(+) CD45R0(-) CD45RA(+) phenotype, the same as that found in some healthy controls, and this phenotype was associated with a lack of response to melan-A peptide ex vivo. In the remaining six patients, melan-A tetramer(+) cells were shifted toward a CCR7(-) CD45R0(+) CD45RA(-) phenotype, and responses to melan-A peptide could be readily demonstrated ex vivo. When lymph nodes infiltrated by melan-A-expressing melanoma cells were examined, a similar dichotomy emerged. These findings demonstrate that activation of melan-A-specific CTL occurs in only some patients with malignant melanoma, and that only patients with such active immune responses are capable of responding to Ag in ex vivo assays.  相似文献   

14.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

15.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

16.
Recent studies have shown that CTL epitopes derived from tumor-associated Ags can be encoded by both primary and nonprimary open reading frames (ORF). In this study we have analyzed the HLA-A2-restricted CD8(+) T cell response to a recently identified CTL epitope derived from an alternative ORF product of gene LAGE-1 (named CAMEL), and the highly homologous gene NY-ESO-1 in melanoma patients. Using MHC/peptide tetramers we detected CAMEL(1-11)-specific CD8(+) T cells in peptide-stimulated PBMC as well as among tumor-infiltrated lymph node cells from several patients. Sorting and expansion of tetramer(+) CD8(+) T cells allowed the isolation of tetramer(bright) and tetramer(dull) populations that specifically recognized the peptide Ag with high and low avidity, respectively. Remarkably, only high avidity CAMEL-specific CTL were able to recognize Ag-expressing tumor cells. A large series of HLA-A2-positive melanoma cell lines was characterized for the expression of LAGE-1 and NY-ESO-1 mRNA and protein and tested for recognition by CAMEL-specific CTL as well as CTL that recognize a peptide (NY-ESO-1(157-165)) encoded by the primary ORF products of the LAGE-1 and NY-ESO-1 genes. This analysis revealed that tumor-associated CD8(+) T cell epitopes are simultaneously and efficiently generated from both primary and nonprimary ORF products of LAGE-1 and NY-ESO-1 genes and, importantly, that this occurs in the majority of melanoma tumors. These findings underscore the in vivo immunological relevance of CTL epitopes derived from nonprimary ORF products and support their use as candidate vaccines for inducing tumor specific cell-mediated immunity against cancer.  相似文献   

17.
The repertoire of human cytotoxic T-lymphocytes (CTL) in response to influenza A viruses has been shown to be directed towards multiple epitopes, with a dominant response to the HLA-A2-restricted M1(58-66) epitope. These studies, however, were performed with peripheral blood mononuclear cells (PBMC) of individuals selected randomly with respect to HLA phenotype or selected for the expression of one HLA allele without considering an influence of other HLA molecules. In addition, little information is available on the influence of HLA makeup on the overall CTL response against influenza viruses. Here, the influenza A virus-specific CTL response was investigated in groups of HLA-A and -B identical individuals. Between groups the individuals shared two or three of the four HLA-A and -B alleles. After in vitro stimulation of PBMC with influenza virus, the highest CTL activity was found in HLA-A2(+) donors. A similar pattern was observed for the precursor frequency of virus-specific CTL (CTLp) ex vivo, with a higher CTLp frequency in HLA-A2-positive donors than in HLA-A2-negative donors, which were unable to recognize the immunodominant M1(58-66) epitope. In addition, CTL activity and frequency of CTLp for the individual influenza virus epitopes were determined. The frequency of CTLp specific for the HLA-B8-restricted epitope NP(380-388) was threefold lower in HLA-B27-positive donors than in HLA-B27-negative donors. In addition, the frequency of CTLp specific for the HLA-A1-restricted epitope NP(44-52) was threefold higher in HLA-A1-, -A2-, -B8-, and -B35-positive donors than in other donors, which was confirmed by measuring the CTL activity in vitro. These findings indicate that the epitope specificity of the CTL response is related to the phenotype of the other HLA molecules. Furthermore, the magnitude of the influenza virus-specific CTL response seems dependent on the HLA-A and -B phenotypes.  相似文献   

18.
For this report, the rapid identification and characterization of human immunodeficiency virus type 1 (HIV-1)-derived broadly cross-subtype-reactive CD8 cytotoxic T lymphocyte (CTL) epitopes were performed. Using a gamma interferon (IFN-gamma) Elispot assay-based approach and a panel of recombinant vaccinia viruses expressing gag, env, pol, and nef genes representing the seven most predominant subtypes and one circulating recombinant form of HIV-1, the subtype specificity and cross-subtype reactivity of a CD8 response were directly measured from circulating peripheral blood mononuclear cells (PBMC). Enhanced sensitivity of detection of CD8 responses from cryopreserved PBMC was achieved using autologous vaccinia virus-infected B-lymphoblastoid cell lines as supplemental antigen-presenting cells. Of eleven subjects studied, six exhibited broadly cross-subtype-reactive CD8-mediated IFN-gamma production (at least seven of eight subtypes recognized) to at least one major gene product from HIV-1. Screening of subjects showing broadly cross-subtype-specific responses in the vaccinia virus-based enzyme-linked immunospot (Elispot) assay using a panel of overlapping peptides resulted in the identification of cross-subtype responses down to the 20-mer peptide level in less than 3 days. Three subjects showed broad cross-subtype reactivity in both the IFN-gamma Elispot assay and the standard chromium release cytotoxicity assay. Fine mapping and HLA restriction analysis of the response from three subjects demonstrated that this technique can be used to define epitopes restricted by HLA-A, -B, and -C alleles. In addition, the ability of all three epitopes to be processed from multiple subtypes of their parent proteins and presented in the context of HLA class I molecules following de novo synthesis is shown. While all three minimal epitopes mapped here had previously been defined as HIV-1 epitopes, two are shown to have novel HLA restriction alleles and therefore exhibit degenerate HLA binding capacity. These findings provide biological validation of HLA supertypes in HIV-1 CTL recognition and support earlier studies of cross-subtype CTL responses during HIV-1 infection.  相似文献   

19.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

20.
Adoptive T cell therapy has been successfully used for treatment of viral and malignant diseases. However, little is known about the fate and trafficking of transferred Ag-specific T cells. Using the tetramer (TM) technology which allows for detection and quantification of Ag-specific CTL, we assessed the frequency of circulating Melan-A-specific CTL in advanced melanoma patients during adoptive T cell therapy. Melan-A-specific CTL were generated from HLA-A2.1(+) patients by in vitro stimulation of CD8(+) T cells with dendritic cells pulsed with a mutated HLA-A2-binding Melan-A (ELAGIGILTV) peptide. Eight patients received three infusions of 0.25-11 x 10(8) Melan-A-specific CTL i.v. at 2-wk intervals along with low-dose IL-2. The transferred T cell product contained a mean of 42.1% Melan-A-TM(+) CTL. Before therapy, the frequencies of Melan-A-specific CTL in patients' circulating CD8(+) T cells ranged from 0.01 to 0.07%. Characterization of the TM frequencies before and at different time points after transfer revealed an increase of circulating Melan-A-specific CTL up to 2%, correlating well with the number of transferred CTL. An elevated frequency of TM(+) T cells was demonstrated up to 14 days after transfer, suggesting long-term survival and/or proliferation of transferred CTL. Combining TM analysis with a flow cytometry-based cytokine secretion assay, unimpaired production of IFN-gamma was demonstrated in vivo for at least 24 h after transfer. Indium-111 labeling of Melan-A-specific CTL demonstrated localization of transferred CTL to metastatic sites as early as 48 h after injection. Overall, the results suggest that in vitro-generated Melan-A-specific CTL survive intact in vivo for several weeks and localize preferentially to tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号