首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza A virus (IAV) triggers a contagious acute respiratory disease that causes considerable mortality annually. Recently, we established a role for the pattern-recognition TLR3 in the response of lung epithelial cells to IAV-derived dsRNA. However, additional nucleic acid-recognition proteins have lately been implicated as key viral sensors, including the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene (MDA)-5. In this study, we investigated the respective role of TLR3 vs RIG-I/MDA-5 signaling in human respiratory epithelial cells infected by IAV using BEAS-2B cells transfected with vectors encoding either a dominant-negative form of TLR3 or of mitochondrial antiviral signaling protein (MAVS; a signaling intermediate of RIG-I and MDA-5), or with plasmids overexpressing functional RIG-I or MDA-5. We demonstrate that the sensing of IAV by TLR3 primarily regulates a proinflammatory response, whereas RIG-I (but not MDA-5) mediates both a type I IFN-dependent antiviral signaling and a proinflammatory response.  相似文献   

2.
3.
4.
Qu L  Feng Z  Yamane D  Liang Y  Lanford RE  Li K  Lemon SM 《PLoS pathogens》2011,7(9):e1002169
Toll-like receptor 3 (TLR3) and cytosolic RIG-I-like helicases (RIG-I and MDA5) sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN) through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF), and mitochondrial antiviral signaling protein (MAVS), respectively. Previously, we demonstrated that hepatitis A virus (HAV), a unique hepatotropic human picornavirus, disrupts RIG-I/MDA5 signaling by targeting MAVS for cleavage by 3ABC, a precursor of the sole HAV protease, 3C(pro), that is derived by auto-processing of the P3 (3ABCD) segment of the viral polyprotein. Here, we show that HAV also disrupts TLR3 signaling, inhibiting poly(I:C)-stimulated dimerization of IFN regulatory factor 3 (IRF-3), IRF-3 translocation to the nucleus, and IFN-β promoter activation, by targeting TRIF for degradation by a distinct 3ABCD processing intermediate, the 3CD protease-polymerase precursor. TRIF is proteolytically cleaved by 3CD, but not by the mature 3C(pro) protease or the 3ABC precursor that degrades MAVS. 3CD-mediated degradation of TRIF depends on both the cysteine protease activity of 3C(pro) and downstream 3D(pol) sequence, but not 3D(pol) polymerase activity. Cleavage occurs at two non-canonical 3C(pro) recognition sequences in TRIF, and involves a hierarchical process in which primary cleavage at Gln-554 is a prerequisite for scission at Gln-190. The results of mutational studies indicate that 3D(pol) sequence modulates the substrate specificity of the upstream 3C(pro) protease when fused to it in cis in 3CD, allowing 3CD to target cleavage sites not normally recognized by 3C(pro). HAV thus disrupts both RIG-I/MDA5 and TLR3 signaling pathways through cleavage of essential adaptor proteins by two distinct protease precursors derived from the common 3ABCD polyprotein processing intermediate.  相似文献   

5.
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.  相似文献   

6.
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ~500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavirus production by intestinal epithelium and virus excretion in the feces. In contrast with most RNA viruses, which interact with either retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5) inside cells, rotavirus was sensed by both RIG-I and MDA5, alone and in combination. Rotavirus did not signal IFN-β through either of the dsRNA sensors TLR3 or dsRNA-activated protein kinase (PKR). Silencing RIG-I or MDA5, or their common adaptor protein mitochondrial antiviral signaling protein (MAVS), significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Overexpression of laboratory of genetics and physiology 2, a RIG-I-like receptor that interacts with viral RNA but lacks the caspase activation and recruitment domains required for signaling through MAVS, significantly decreased IFN-β production and increased rotavirus titers in infected IECs. Rotavirus-infected mice lacking MAVS, but not those lacking TLR3, TRIF, or PKR, produced significantly less IFN-β and increased amounts of virus in the intestinal epithelium, and shed increased quantities of virus in the feces. We conclude that RIG-I or MDA5 signaling through MAVS is required for the activation of IFN-β production by rotavirus-infected IECs and has a functionally important role in determining the magnitude of rotavirus replication in the intestinal epithelium.  相似文献   

7.
8.
The paramyxovirus Sendai (SV), is a well-established inducer of IFN-alphabeta gene expression. In this study we show that SV induces IFN-alphabeta gene expression normally in cells from mice with targeted deletions of the Toll-IL-1 resistance domain containing adapters MyD88, Mal, Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF), and TRIF-related adaptor molecule TLR3, or the E3 ubiquitin ligase, TNFR-associated factor 6. This TLR-independent induction of IFN-alphabeta after SV infection is replication dependent and mediated by the RNA helicase, retinoic acid-inducible gene-I (RIG-I) and not the related family member, melanoma differentiation-associated gene 5. Furthermore, we characterize a RIG-I-like RNA helicase, Lgp2. In contrast to RIG-I or melanoma differentiation-associated gene 5, Lgp2 lacks signaling caspase recruitment and activation domains. Overexpression of Lgp2 inhibits SV and Newcastle disease virus signaling to IFN-stimulated regulatory element- and NF-kappaB-dependent pathways. Importantly, Lgp2 does not prevent TLR3 signaling. Like RIG-I, Lgp2 binds double-stranded, but not single-stranded, RNA. Quantitative PCR analysis demonstrates that Lgp2 is present in unstimulated cells at a lower level than RIG-I, although both helicases are induced to similar levels after virus infection. We propose that Lgp2 acts as a negative feedback regulator of antiviral signaling by sequestering dsRNA from RIG-I.  相似文献   

9.
10.
11.
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity   总被引:11,自引:2,他引:9  
Alpha/beta interferon immune defenses are essential for resistance to viruses and can be triggered through the actions of the cytoplasmic helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Signaling by each is initiated by the recognition of viral products such as RNA and occurs through downstream interaction with the IPS-1 adaptor protein. We directly compared the innate immune signaling requirements of representative viruses of the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Reoviridae for RIG-I, MDA5, and interferon promoter-stimulating factor 1 (IPS-1). In cultured fibroblasts, IPS-1 was essential for innate immune signaling of downstream interferon regulatory factor 3 activation and interferon-stimulated gene expression, but the requirements for RIG-I and MDA5 were variable. Each was individually dispensable for signaling triggered by reovirus and dengue virus, whereas RIG-I was essential for signaling by influenza A virus, influenza B virus, and human respiratory syncytial virus. Functional genomics analyses identified cellular genes triggered during influenza A virus infection whose expression was strictly dependent on RIG-I and which are involved in processes of innate or adaptive immunity, apoptosis, cytokine signaling, and inflammation associated with the host response to contemporary and pandemic strains of influenza virus. These results define IPS-1-dependent signaling as an essential feature of host immunity to RNA virus infection. Our observations further demonstrate differential and redundant roles for RIG-I and MDA5 in pathogen recognition and innate immune signaling that may reflect unique and shared biologic properties of RNA viruses whose differential triggering and control of gene expression may impact pathogenesis and infection.  相似文献   

12.
Toll‐like receptor‐3 (TLR3) and RNA helicase retinoic‐acid‐inducible protein‐1 (RIG‐I) serve as cytoplasmic sensors for viral RNA components. In this study, we investigated how the TLR3 and RIG‐I signalling pathway was stimulated by viral infection to produce interleukin (IL)‐32‐mediated pro‐inflammatory cytokines and type I interferon in the corneal epithelium using Epstein–Barr virus (EBV)‐infected human cornea epithelial cells (HCECs/EBV) as a model of viral keratitis. Increased TLR3 and RIG‐I that are responded to EBV‐encoded RNA 1 and 2 (EBER1 and EBER2) induced the secretion of IL‐32‐mediated pro‐inflammatory cytokines and IFN‐β through up‐regulation of TRIF/TRAF family proteins or RIP‐1. TRIF silencing or TLR3 inhibitors more efficiently inhibited sequential phosphorylation of TAK1, TBK1, NF‐κB and IRFs to produce pro‐inflammatory cytokines and IFN‐β than RIG‐I‐siRNA transfection in HCECs/EBV. Blockade of RIP‐1, which connects the TLR3 and RIG‐I pathways, significantly blocked the TLR3/TRIF‐mediated and RIG‐I‐mediated pro‐inflammatory cytokines and IFN‐β production in HCECs/EBV. These findings demonstrate that TLR3/TRIF‐dependent signalling pathway against viral RNA might be a main target to control inflammation and anti‐viral responses in the ocular surface.  相似文献   

13.

Background  

IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region.  相似文献   

14.
The RNA helicases RIG-I and MDA5 detect virus infection of dendritic cells (DCs) leading to cytokine induction. Maximal sensitivity for virus detection by these helicases is obtained after their upregulation, which is thought to occur primarily through type I interferon (IFN) signaling. Here we demonstrate that in response to paramyxovirus infection, RIG-I upregulation requires type I IFN whereas MDA5 expression is increased by Sendai virus infection independently of signaling mediated by type I IFN, STAT1, tumor necrosis factor alpha, or NF-kappaB. This MDA5 upregulation is largely lost in IRF3 knockout DCs and is achieved in type I IFN-deficient cells expressing constitutively active IRF3.  相似文献   

15.
Epithelial cells of the lung are the primary targets for respiratory viruses. Virus-carried single-stranded RNA (ssRNA) can activate Toll-like receptors (TLRs) 7 and 8, whereas dsRNA is bound by TLR3 and a cytoplasmic RNA helicase, retinoic acid-inducible protein I (RIG-I). This recognition leads to the activation of host cell cytokine gene expression. Here we have studied the regulation of influenza A and Sendai virus-induced alpha interferon (IFN-alpha), IFN-beta, interleukin-28 (IL-28), and IL-29 gene expression in human lung A549 epithelial cells. Sendai virus infection readily activated the expression of the IFN-alpha, IFN-beta, IL-28, and IL-29 genes, whereas influenza A virus-induced activation of these genes was mainly dependent on pretreatment of A549 cells with IFN-alpha or tumor necrosis factor alpha (TNF-alpha). IFN-alpha and TNF-alpha induced the expression of the RIG-I, TLR3, MyD88, TRIF, and IRF7 genes, whereas no detectable TLR7 and TLR8 was seen in A549 cells. TNF-alpha also strongly enhanced IKK epsilon mRNA and protein expression. Ectopic expression of a constitutively active form of RIG-I (deltaRIG-I) or IKK epsilon, but not that of TLR3, enhanced the expression of the IFN-beta, IL-28, and IL-29 genes. Furthermore, a dominant-negative form of RIG-I inhibited influenza A virus-induced IFN-beta promoter activity in TNF-alpha-pretreated cells. In conclusion, IFN-alpha and TNF-alpha enhanced the expression of the components of TLR and RIG-I signaling pathways, but RIG-I was identified as the central regulator of influenza A virus-induced expression of antiviral cytokines in human lung epithelial cells.  相似文献   

16.
Neutrophils, historically known for their involvement in acute inflammation, are also targets for infection by many different DNA and RNA viruses. However, the mechanisms by which they recognize and respond to viral components are poorly understood. Polyinosinic:polycytidylic acid (poly(I:C)) is a synthetic mimetic of viral dsRNA that is known to interact either with endosomal TLR3 (not expressed by human neutrophils) or with cytoplasmic RNA helicases such as melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). In this study, we report that intracellularly administered poly(I:C) stimulates human neutrophils to specifically express elevated mRNA levels encoding type I IFNs, immunoregulatory cytokines, and chemokines, such as TNF-alpha, IL-12p40, CXCL10, CXCL8, CCL4, and CCL20, as well as classical IFN-responsive genes (IRG), including IFIT1 (IFN-induced protein with tetratricopeptide repeats 1)/IFN-stimulated gene (ISG)56, G1P2/ISG15, PKR (dsRNA-dependent protein kinase), and IFN-regulatory factor (IRF)7. Investigations into the mechanisms whereby transfected poly(I:C) promotes gene expression in neutrophils uncovered a crucial involvement of the MAPK-, PKR-, NF-kappaB-, and TANK (TNF receptor-associated NF-kappaB kinase)-binding kinase (TBK1)/IRF3-signaling transduction pathways, as illustrated by the use of specific pharmacological inhibitors. Consistent with the requirement of the cytoplasmic dsRNA pathway for antiviral signaling, human neutrophils were found to constitutively express significant levels of both MDA5 and RIG-I, but not TLR3. Accordingly, neutrophils isolated from MDA5-deficient mice had a partial impairment in the production of IFN-beta and TNF-alpha upon infection with encephalomyocarditis virus. Taken together, our data demonstrate that neutrophils are able to activate antiviral responses via helicase recognition, thus acting at the frontline of immunity against viruses.  相似文献   

17.
RIG-I-like receptors and Toll-like receptors (TLRs) play important roles in the recognition of viral infections. However, how these molecules contribute to the defense against poliovirus (PV) infection remains unclear. We characterized the roles of these sensors in PV infection in transgenic mice expressing the PV receptor. We observed that alpha/beta interferon (IFN-α/β) production in response to PV infection occurred in an MDA5-dependent but RIG-I-independent manner in primary cultured kidney cells in vitro. These results suggest that, similar to the RNA of other picornaviruses, PV RNA is recognized by MDA5. However, serum IFN-α levels, the viral load in nonneural tissues, and mortality rates did not differ significantly between MDA5-deficient mice and wild-type mice. In contrast, we observed that serum IFN production was abrogated and that the viral load in nonneural tissues and mortality rates were both markedly higher in TIR domain-containing adaptor-inducing IFN-β (TRIF)-deficient and TLR3-deficient mice than in wild-type mice. The mortality rate of MyD88-deficient mice was slightly higher than that of wild-type mice. These results suggest that multiple pathways are involved in the antiviral response in mice and that the TLR3-TRIF-mediated signaling pathway plays an essential role in the antiviral response against PV infection.  相似文献   

18.
Activation of host cell antiviral responses is mediated by receptors detecting the presence of viruses. Here we have studied the role of double-stranded RNA (dsRNA) binding molecules melanoma differentiation-associated gene 5 (mda-5), retinoic acid inducible gene I (RIG-I), and Toll-like receptor 3 (TLR3) in measles virus (MV)-induced expression of antiviral cytokines and chemokines in human A549 lung epithelial cells and human umbilical vein endothelial cells (HUVECs). We show that MV infection results in the activation of mda-5, RIG-I, and TLR3 gene expression that is followed by high expression of interferon (IFN)-beta, interleukin (IL)-28 and IL-29, CCL5, and CXCL10 genes. We also demonstrate that IFN-alpha and IFN-beta upregulate mda-5, RIG-I, and TLR3 gene expression in epithelial and endothelial cell lines. Forced expression of mda-5, but not that of RIG-I or TLR3, leads to enhanced IFN-beta promoter activity in MV-infected A549 cells. Our results suggest that IFN-inducible mda-5 is involved in MV-induced expression of antiviral cytokines.  相似文献   

19.
Vascular endothelial growth factor (VEGF) plays a key role in formation of pleural effusions and in tumorigenesis and progression of malignant mesothelioma. Mesothelial cells (MC) express the viral receptors Toll-like receptor 3 (TLR3), RIG-I and MDA5. Activation of these receptors by viral RNA exemplified by poly(I:C) RNA leads to a time- and dose-dependent increase of mesothelial VEGF synthesis. To show the specific effect of viral receptors knockdown experiments with siRNA for TLR3, RIG-I and MDA5 were performed. This finding of viral induced mesothelial VEGF synthesis may indicate a novel link between viral infections and formation of pleural effusions and progression of malignant mesothelioma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号