首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
Cyclophilin A has attracted attention recently as a new target of anti-human immunodeficiency virus type 1 (HIV-1) drugs. However, so far no drug against HIV-1 infection exhibiting this mechanism of action has been approved. To identify new potent candidates for inhibitors, we performed in silico screening of a commercial database of more than 1,300 drug-like compounds by using receptor-based docking studies. The candidates selected from docking studies were subsequently tested using biological assays to assess anti-HIV activities. As a result, two compounds were identified as the most active. Specifically, both exhibited anti-HIV activity against viral replication at a low concentration and relatively low cytotoxicity at the effective concentration inhibiting viral growth by 50 %. Further modification of these molecules may lead to the elucidation of potent inhibitors of HIV-1.
Figure
Docking poses of two compounds (23 and 12)?with anti-HIV activity  相似文献   

5.

Background

HIV-1 integrase (IN) is an emerging drug target, as IN strand transfer inhibitors (INSTIs) are proving potent antiretroviral agents in clinical trials. One credible theory sees INSTIs as docking at the cellular (acceptor) DNA-binding site after IN forms a transitional complex with viral (donor) DNA. However, mapping of the DNA and INSTI binding sites within the IN catalytic core domain (CCD) has been uncertain.

Methods

Structural superimpositions were conducted using the SWISS PDB and Cn3D free software. Docking simulations of INSTIs were run by a widely validated genetic algorithm (GOLD).

Results

Structural superimpositions suggested that a two-metal model for HIV-1 IN CCD in complex with small molecule, 1-(5-chloroindol-3-yl)-3-(tetrazoyl)-1,3-propandione-ene (5CITEP) could be used as a surrogate for an IN/viral DNA complex, because it allowed replication of contacts documented biochemically in viral DNA/IN complexes or displayed by a crystal structure of the IN-related enzyme Tn5 transposase in complex with transposable DNA. Docking simulations showed that the fitness of different compounds for the catalytic cavity of the IN/5CITEP complex significantly (P < 0.01) correlated with their 50% inhibitory concentrations (IC50s) in strand transfer assays in vitro. The amino acids involved in inhibitor binding matched those involved in drug resistance. Both metal binding and occupation of the putative viral DNA binding site by 5CITEP appeared to be important for optimal drug/ligand interactions. The docking site of INSTIs appeared to overlap with a putative acceptor DNA binding region adjacent to but distinct from the putative donor DNA binding site, and homologous to the nucleic acid binding site of RNAse H. Of note, some INSTIs such as 4,5-dihydroxypyrimidine carboxamides/N -Alkyl-5-hydroxypyrimidinone carboxamides, a highly promising drug class including raltegravir/MK-0518 (now in clinical trials), displayed interactions with IN reminiscent of those displayed by fungal molecules from Fusarium sp., shown in the 1990s to inhibit HIV-1 integration.

Conclusion

The 3D model presented here supports the idea that INSTIs dock at the putative acceptor DNA-binding site in a IN/viral DNA complex. This mechanism of enzyme inhibition, likely to be exploited by some natural products, might disclose future strategies for inhibition of nucleic acid-manipulating enzymes.  相似文献   

6.

Background

The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS) remain controversial.

Results

Here, we studied the nuclear import pathway of IN by using multiple in vivo and in vitro systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated in vivo using bimolecular fluorescence complementation assay (BiFC). Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide.

Conclusion

Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.  相似文献   

7.
P-glycoprotein (P-gp) has a major role to play in drug pharmacokinetics and pharmacodynamics, since it effluxes many cytotoxic hydrophobic anticancer drugs from gastrointestinal tract, brain, liver and kidney. Piperine is known to enhance the bioavailability of curcumin, as a substrate of P-gp by at least 2000 %. Besides these at least 50 other substrates and inhibitors of P-gp have been reported so far. All P-gp inhibitors have diverse structures. Although little is known about binding of some flavonoids and steroids at the NBD (nucleotide binding domain) of P-gp in the vicinity of ATP binding site inhibiting its hydrolysis, a valid explanation of how P-gp accommodates such a diverse set of inhibitors is still awaited. In the present study, piperine up to 100 μM has not shown observable cytotoxic effect on MDCK cell line, and it has been shown to accumulate rhodamine by fluorescence microscopy and fluorescent activated cell sorter in MDCK cells. Computational simulation for piperine and some first and second generation P-gp inhibitors has shown that these dock at the NBD site of P-gp. A comparative simulation study has been carried out regarding their docking and binding energies. Binding conformation of P-gp co-crystallized complexes with ADP, AMP-PNP (Adenylyl-imidodiphosphate), and ATP were compared with piperine. The receptor based E-pharmacophore of docked piperine has been simulated to find common features amongst P-gp inhibitors. Finally it has been concluded that piperine could be utilized as base molecule for design and development of safe non-toxic inhibitor of P-gp in order to enhance the bioavailability of most of its substrates.
Figure
Piperine binds between the consensus sequence of Walker A/P loop and Walker C loop (linker peptide) at the nucleotide binding domain which is crucial for ATP coupled efflux through P-gp. ATP binding competes with piperine. This explains why piperine enhances the bioavailability of its substrate like curcumin by 2000 %  相似文献   

8.
The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were predicted by molecular dynamics (MD) simulation in order to evaluate the miscibility of TNAD and the other four propellants. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility. The densities and binding energies of TNAD/propellants blends were further investigated. The results indicate that the better the miscibility between TNAD and the propellants, the smaller the variation of the density rate. The larger the intermolecular interaction, the better the miscibility between components. The analysis of radial distribution function shows that the main interaction ways between TNAD and other energetic components are short-range interactions.
Figure
Based on molecular dynamics (MD) simulation, the binding energy, density, radial distribution function of TNAD/propellants blends were computed in order to evaluate the miscibility of TNAD and some propellants. The results show that the density change rate, binding energy and radial distribution function of TNAD/ propellants blends are generally consistent with the experimental results. The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were also predicted by the MD simulations. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility.  相似文献   

9.
HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this class. In an effort to understand the molecular mechanism of the resistance of T66I/M154I IN to the inhibitor L-731,988 and its specific binding modes, we have carried out docking studies, explicit solvent MD simulations, and binding free energy calculations. The inhibitor was docked against different protein conformations chosen from prior MD trajectories, resulting in 2 major orientations within the active site. MD simulations have been carried out for the T66I/M154I DM IN, DM IN in complex with L-731,988 in 2 different orientations, and 1QS4 IN in complex with L-731,988. The results of these simulations show a similar dynamical behavior between T66I/M154I IN alone and in complex with L-731,988, while significant differences are observed in the mobility of the IN catalytic loop (residues 138-149). Water molecules bridging the inhibitor to residues from the active site have been identified, and residue Gln62 has been found to play an important role in the interactions between the inhibitor and the protein. This work provides information about the binding modes of L-731,988, as well as insight into the mechanism of inhibitor-resistance in HIV-1 integrase.  相似文献   

10.
Selective inhibition of the nitric oxide synthase isoforms (NOS) is a promising approach for the treatment of various disorders. However, given the high active site conservation among all NOS isoforms, the design of selective inhibitors is a challenging task. Analysis of the X-ray crystal structures of the NOS isoforms complexed with known inhibitors most often gives no clues about the structural determinants behind the selective inhibition since the inhibitors share the same binding conformation. Aimed at a better understanding of the structural factors responsible for selective inhibition of NOS isoforms we have performed MD simulations for iNOS, nNOS and eNOS complexed with Nω-NO2-L-Arg (1), and with the aminopyridine derivatives 2 and 3. The slightly better selectivity of 1 for nNOS may be assigned to the presence of extra charge–charge interactions due to its “extended” conformation. While the high affinity of 2 for iNOS can be explained by the formation of an iNOS-specific subpocket upon binding, the lack of affinity for eNOS is associated to a conformational change in Glu363. The strong van der Waals and electrostatic interactions between 3 and the active site of nNOS are most likely responsible for its higher affinity for this isoform. Owing to the elongated and narrow binding pocket of iNOS, the correct positioning of 3 over the heme group is difficult, which may account for its lower affinity toward this isoform. Brought together, our results might help to rationalize the design of selective NOS inhibitors.
Figure
Overall RMSD of the protein backbone over 8 ns simulation is shown for the complexes 3:eNOSmonomer and 3:eNOSdimer  相似文献   

11.
12.
The imine intermediates of tazobactam and sulbactam bound to SHV-1 β-lactamase were investigated by molecular dynamics (MD) simulation respectively. Hydrogen bond networks around active site were found different between tazobactam and sulbactam acyl-enzymes. In tazobactam imine intermediate, it was observed that the triazolyl ring formed stable hydrogen bonds with Asn170 and Thr167. The results suggest that conformation of imine determined the population of intermediates. In imine intermediate of tazobactam, the triazolyl ring is trapped in Thr_Asn pocket, and it restricts the rotation of C5-C6 bond so that tazobactam can only generate trans enamine intermediate. Further, conformational cluster analyses are performed to substantiate the results. These findings provide an explanation for the corresponding experimental results, and will be potentially useful in the development of new inhibitors.
Figure
The distribution of dihedral angle N4-C5-C6-C7 in two systems (imine_taz and imine_sul) along MD simulations  相似文献   

13.
Understanding the nature of the recognition between amyloid protofibrils and dye molecules at the molecular level is essential to improving instructive guides for designing novel molecular probes or new inhibitors. However, the atomic details of the binding between dyes and amyloid fibrils are still not fully understood. In this study, molecular docking, consensus scoring, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses were integrated to investigate the binding between Congo red (CR) and the GNNQQNY protofibril from yeast prion protein Sup35 and to further evaluate their binding stabilities and affinities. Our results reveal that there are four CR binding sites located on GNNQQNY protofibril surface. These four CR binding sites adopt dual binding modes by which CR binding with its long axis parallel and perpendicular to the long axis of the protofibril. In addition, CR was also found to bind to the edge of the protofibril via hydrophobic/aromatic and hydrogen-bonding interactions, which is inferred as the possible inhibition mechanism to prevent the elongation of the protofibril from the addition of incoming peptides. Virtual screening from National Cancer Institute (NCI) database obtained three hit compounds with higher binding affinity than CR to the edge of the protofibril due to the fact that the central parts of these compounds are able to form additional hydrogen bonds with the protofibril. The results of the study could be useful for the development of new molecular probes or inhibitors for clinical applications.
Figure
Investigation of the Congo red binding toward GNNQQNY protofibril and in silico virtual screening for the identification of new aggregation inhibitors  相似文献   

14.
Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into flavonoids. The activity of CHI is essential for the biosynthesis of flavonoids precursors of floral pigments and phenylpropanoid plant defense compounds. In the present study, we explored the detailed binding structures and binding free energies for two different active site conformations of CHI with s-cis/s-trans conformers of three chalcone compounds by performing molecular dynamics (MD) simulations and binding free energy calculations. The computational results indicate that s-cis/s-trans conformers of chalcone compounds are orientated in the similar binding position in the active site of CHI and stabilized by the different first hydrogen bond network and the same second hydrogen bond network. The first hydrogen bond network results in much lower binding affinity of s-trans conformer of chalcone compound with CHI than that of s-cis conformer. The conformational change of the active site residue T48 from indirectly interacting with the substrate via the second hydrogen bond network to directly forming the hydrogen bond with the substrates cannot affect the binding mode of both conformers of chalcone compounds, but remarkably improves the binding affinity. These results show that CHI has a strong stereoselectivity. The calculated binding free energies for three chalcone compounds with CHI are consistent with the experimental activity data. In addition, several valuable insights are suggested for future rational design and discovery of high-efficiency mutants of CHI.
Figure
Stereoselectivity of chalcone isomerase with chalcone derivatives  相似文献   

15.

Background

An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT) p300.

Results

In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process.

Conclusions

The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.  相似文献   

16.
A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.
Figure
Metastable sI hydrogen hydrate studied by classical molecular dynamics simulation  相似文献   

17.
18.
Isatin is an important compound from the biological aspect of view. It is an endogenous substance and moreover; various pharmacological activities have been reported for isatin and its derivatives. In-vitro cytotoxic effects of the prepared isatin Schiff bases toward HeLa, LS180 and Raji human cancer cell lines has been reported in our previous work. 3-(2-(4-nitrophenyl)hydrazono) indolin-2-one was found to be the most potent one among the studied compounds (IC30?=?12.2 and 21.8 μM in HeLa and LS-180 cell lines, respectively). Obtained biological data could be well interpreted using docking binding energies toward vascular endothelial growth factor receptor (VEGFR-2); a key anticancer target being biologically investigated against various isatin derivatives. In the present work, quantum mechanical (QM) method including functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP) was used to estimate individual ligand-residue interaction energies for the docked 3-(2-(4-nitrophenyl)hydrazono) indolin-2-one into VEGFR-2 active site. Results were further interpreted via calculated polarization effects induced by individual amino acids of the receptor active site. A fairly good correlation could be found between polarization effects and estimated binding energies (R2?=?0.7227). Conformational analysis revealed that 3-(2-(4-nitrophenyl) hydrazono) indolin-2-one might not necessarily interact with the VEGFR-2 active site in its minimum energy conformation.
Various interactions of a 3-(2-(4-nitrophenyl) hydrazono) indolin-2-one structure with VEGFR-2 active site have been evaluated in terms of individual ligand-residue binding energies using functional B3LYP in association with Def2-SVP basis set  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the HIV-1 lifecycle which aids the integration of viral DNA into the host chromosome. Recently synthesized 12-mer peptide EBR28, which can strongly bind to IN, is one of the most potential small peptide leading compounds inhibiting IN binding with viral DNA. However, the binding mode between EBR28 peptide with HIV-1 IN and the inhibition mechanism remain uncertain. In this paper, the binding modes of EBR28 with HIV-1 IN monomer core domain (IN(1)) and dimmer core domain (IN(2)) were investigated by using molecular docking and molecular dynamics (MD) simulation methods. The results indicated that EBR28 bound to the interfaces of the IN(1) and IN(2) systems mainly through the hydrophobic interactions with the beta3, alpha1 and alpha5 regions of the proteins. The binding free energies for IN(1) with a series of EBR28 mutated peptides were calculated with the MM/GBSA model, and the correlation between the calculated and experimental binding free energies is very good (r=0.88). Thus, the validity of the binding mode of IN(1) with EBR28 was confirmed. Based on the binding modes, the inhibition mechanism of EBR28 was explored by analyzing the essential dynamics (ED), energy decomposition and the mobility of EBR28 in the two docked complexes. The proposed inhibition mechanism is represented that EBR28 binds to the interface of IN(1) to form the IN(1)_EBR28 complex and preventes the formation of IN dimmer, finally leads to the partial loss of binding potency for IN with viral DNA. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing anti-HIV small peptide drugs.  相似文献   

20.
A tetramer model for human immunodeficiency virus type 1 (HIV-1) integrase (IN) with DNA representing long terminal repeat (LTR) termini was previously assembled to predict the IN residues that interact with the LTR termini; these predictions were experimentally verified for nine amino acid residues [Chen, A., Weber, I. T., Harrison, R. W. & Leis, J. (2006). Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J. Biol. Chem., 281, 4173-4182]. In a similar strategy, the unique amino acids found in avian sarcoma virus IN, rather than HIV-1 or Mason-Pfizer monkey virus IN, were substituted into the structurally related positions of HIV-1 IN. Substitutions of six additional residues (Q44, L68, E69, D229, S230, and D253) showed changes in the 3′ processing specificity of the enzyme, verifying their predicted interaction with the LTR DNA. The newly identified residues extend interactions along a 16-bp length of the LTR termini and are consistent with known LTR DNA/HIV-1 IN cross-links. The tetramer model for HIV-1 IN with LTR termini was modified to include two IN binding domains for lens-epithelium-derived growth factor/p75. The target DNA was predicted to bind in a surface trench perpendicular to the plane of the LTR DNA binding sites of HIV-1 IN and extending alongside lens-epithelium-derived growth factor. This hypothesis is supported by the in vitro activity phenotype of HIV-1 IN mutant, with a K219S substitution showing loss in strand transfer activity while maintaining 3′ processing on an HIV-1 substrate. Mutations at seven other residues reported in the literature have the same phenotype, and all eight residues align along the length of the putative target DNA binding trench.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号