首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
人多潜能干细胞(hPSC)包括人胚胎干细胞(hESC)和诱导性多潜能干细胞(hiPSC),理论上具有分化成为人类所有细胞类型的能力.基于hPSC的基因打靶技术,不但可以纠正人基因组中的遗传突变用于细胞治疗,还可以通过反向遗传学的方式向hPSC引入疾病特异的突变.将携带人类疾病遗传基因的hPSC分化为特定的细胞类型,在理论上可以在体外模拟人类疾病的发生,研究人类疾病发生的机理,并建立体外筛选平台寻找治疗性药物.基因编辑和干细胞技术的结合将为人类疾病的机制研究和再生医学治疗带来革命性的突破.  相似文献   

2.
The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EPI-SCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR-371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.  相似文献   

3.
人多潜能干细胞(hPSC)包括人胚胎干细胞(hESC)和诱导性多潜能干细胞(hiPSC),理论上具有分化成为人类所有细胞类型的能力.基于hPSC的基因打靶技术,不但可以纠正人基因组中的遗传突变用于细胞治疗,还可以通过反向遗传学的方式向hPSC引入疾病特异的突变.将携带人类疾病遗传基因的hPSC分化为特定的细胞类型,在理论上可以在体外模拟人类疾病的发生,研究人类疾病发生的机理,并建立体外筛选平台寻找治疗性药物.基因编辑和干细胞技术的结合将为人类疾病的机制研究和再生医学治疗带来革命性的突破.  相似文献   

4.
Fourier transform infrared (FTIR) microspectroscopy was employed to elucidate the macromolecular phenotype of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) and their differentiated progeny. Undifferentiated hESCs and hiPSC lines were found to be not clearly distinguishable from each other. However, although both hESC and hiPSC variants appeared to undergo similar changes during differentiation in terms of cell surface antigens, the derived cell types from all cell lines could be discriminated using FTIR spectroscopy. We foresee a possible future role for FTIR microspectroscopy as a powerful and objective investigative and quality control tool in regenerative medicine. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones, three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation, but it does not require culture preadaptation, use of microcarriers or any other matrices. Over a time course of 4-7 d, hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly, hPSCs maintain pluripotency and karyotype stability for more than ten passages.  相似文献   

6.
NL Corrales  K Mrasek  M Voigt  T Liehr  N Kosyakova 《Gene》2012,506(2):377-379
Results from the analysis of copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitor cell lines (hiPSC and hESC-derived NPC) are presented. Two different types of CNVs were detected: a) CNVs inherited from the original source of pluripotent cells (hESC and hiPSC) and b) CNVs detected either in the original source of pluripotent cells or in the derived NPC cell lines but not in both at the same time. Our data suggest that submicroscopic chromosomal changes happened during culture and manipulation of cells and those differentiation procedures could result in gains and losses of genomic regions in pluripotent cell-derived neuroprogenitors. Overall, the results indicate that even chromosomally stable stem cell lines would need to be analyzed in detail by high resolution methodologies before their clinical use.  相似文献   

7.
Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC) lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines.  相似文献   

8.
It has been known for over 20 years that foetal calf serum can induce hypertrophy in cultured cardiomyocytes but this is rarely considered when examining cardiomyocytes derived from pluripotent stem cells (PSC). Here, we determined how serum affected cardiomyocytes from human embryonic‐ (hESC) and induced pluripotent stem cells (hiPSC) and hiPSC from patients with hypertrophic cardiomyopathy linked to a mutation in the MYBPC3 gene. We first confirmed previously published hypertrophic effects of serum on cultured neonatal rat cardiomyocytes demonstrated as increased cell surface area and beating frequency. We then found that serum increased the cell surface area of hESC‐ and hiPSC‐derived cardiomyocytes and their spontaneous contraction rate. Phenylephrine, which normally induces cardiac hypertrophy, had no additional effects under serum conditions. Likewise, hiPSC‐derived cardiomyocytes from three MYBPC3 patients which had a greater surface area than controls in the absence of serum as predicted by their genotype, did not show this difference in the presence of serum. Serum can thus alter the phenotype of human PSC derived cardiomyocytes under otherwise defined conditions such that the effects of hypertrophic drugs and gene mutations are underestimated. It is therefore pertinent to examine cardiac phenotypes in culture media without or in low concentrations of serum.  相似文献   

9.
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.  相似文献   

10.
We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols.  相似文献   

11.
12.
Much of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the ‘normal’ pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells. Analysis of the gene expression data revealed no iPSC-specific gene expression pattern in accordance with previous reports. We further compared cells, differentiated as embryoid bodies in 2 media proposed to initiate differentiation towards separate cell fates, as well as 20 adult tissues. From this analysis we have generated a gene list which defines pluripotency and establishes a baseline for the pluripotent state. Finally, we provide lists of genes enriched under both differentiation conditions which show the proposed bias toward independent cell fates.  相似文献   

13.
Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated.  相似文献   

14.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.  相似文献   

15.
16.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.  相似文献   

17.

Background

The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC) holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC) and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC), including hiPSC generated from CD34+ cord blood using non-viral, non-integrating methods.

Methodology/Principal Findings

We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB) with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5%) oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64–89%) of cardiac troponin I+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.

Conclusion/Significance

This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.  相似文献   

18.
19.

Rationale

Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs.

Method and Result

We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines.

Conclusion

We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.  相似文献   

20.
Human pluripotent embryonic stem cells (hESC) have great promise for research into human developmental biology and the development of cell therapies for the treatment of diseases. To meet the increased demand for characterized hESC lines, we present the derivation and characterization of five hESC lines on mouse embryonic fibroblast cells. Our stem cell lines are characterized by morphology, long-term expansion, and expression profiles of a number of specific markers, including TRA-1-60, TRA-1-81, alkaline phosphatase, connexin 43, OCT-4, NANOG, CXCR4, NODAL, LEFTY2, THY-1, TDGF1, PAX6, FOXD3, SOX2, EPHA2, FGF4, TAL1, AC133 and REX-1. The pluripotency of the cell line was confirmed by spontaneous differentiation under in vitro conditions. Whereas all of the cell lines expressed all the characteristics of undifferentiated pluripotent hESC, two of the cell lines carried a triploid karyotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号