首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Although disputed by some, increasing evidence suggests that TNF-α synergies with traditional chemotherapeutic drugs to exert a heightened antitumor effect. The present study investigated the antitumor efficacy of recombinant IL-15 in combination with the STAT3 inhibitor cucurbitacin-I in a doxorubicin-resistant murine lymphoma model. The significance of the work is to understand and design effective strategies in doxorubicin resistant lymphomas. TNF-α is downregulated in dendritic cells from mice with Dalton's lymphoma and shows an inverse relationship with disease progression. Doxorubicin-resistant DL cells have elevated levels of Bcl-2 and Mcl-1 and increased phosphorylation of STAT3. These cells are refractory to dendritic cell derived TNF-α. Doxorubicin resistant Dalton's lymphoma is susceptible to dendritic cell derived TNF-α upon stimulation with the STAT3 inhibitor cucurbitacin-I, which downregulates STAT3 and other survival molecules. The combined treatment of low dose of cucurbitacin-I and rIL-15 is ineffective in mice with doxorubicin resistant Dalton's lymphoma, but a similar therapy prolongs the survival of mice transplanted with parental Dalton's lymphoma. Doxorubicin resistant Dalton's lymphoma responds to therapy with high doses of cucurbitacin-I and rIL-15. Dendritic cell derived from mice responded positively to the therapy and regained their tumoricidal properties with respect to growth inhibition and killing of DL tumor cells. Similar to DL, DC derived from CML patients are impaired in TNF-α expression and are unable to restrict the growth of drug-resistant lymphoma and leukemia cells. This combination approach could be used as a new therapeutic strategy for aggressive and highly metastatic doxorubicin resistant lymphoma.  相似文献   

2.
Dendritic cells (DCs) are well known for their capacity to induce adaptive antitumor immune response through Ag presentation and tumor-specific T cell activation. Recent findings reveal that besides this role, DCs may display additional antitumor effects. In this study, we provide evidence that LPS- or IFN-gamma-activated rat bone marrow-derived dendritic cells (BMDCs) display killing properties against tumor cells. These cytotoxic BMDCs exhibit a mature DC phenotype, produce high amounts of IL-12, IL-6, and TNF-alpha, and retain their phagocytic properties. BMDC-mediated tumor cell killing requires cell-cell contact and depends on NO production, but not on perforin/granzyme or on death receptors. Furthermore, dead tumor cells do not exhibit characteristics of apoptosis. Thus, intratumoral LPS injections induce an increase of inducible NO synthase expression in tumor-infiltrating DCs associated with a significant arrest of tumor growth. Altogether, these results suggest that LPS-activated BMDCs represent powerful tumoricidal cells which enforce their potential as anticancer cellular vaccines.  相似文献   

3.
Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.  相似文献   

4.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   

5.
TNF-alpha-related apoptosis-inducing ligand (TRAIL) is characterized by its preferential induction of apoptosis of tumor cells but not normal cells. Dendritic cells (DCs), besides their role as APCs, now have been demonstrated to exert cytotoxicity or cytostasis on some tumor cells. Here, we report that both human CD34(+) stem cell-derived DCs (CD34DCs) and human CD14(+) monocyte-derived DCs (MoDCs) express TRAIL and exhibit cytotoxicity to some types of tumor cells partially through TRAIL. Moderate expression of TRAIL appeared on CD34DCs from the 8th day of culture and was also seen on freshly isolated monocytes. The level of TRAIL expression remained constant until DC maturation. TRAIL expression on immature CD34DCs or MoDCs was greatly up-regulated after IFN-beta stimulation. Moreover, IFN-beta could strikingly enhance the ability of CD34DCs or MoDCs to kill TRAIL-sensitive tumor cells, but LPS did not have such an effect. The up-regulation of TRAIL on IFN-beta-stimulated DCs partially contributed to the increased cytotoxicity of DCS: Pretreatment of TRAIL-sensitive tumor cells with caspase-3 inhibitor could significantly increase their resistance to the cytotoxicity of IFN-beta-stimulated DCS: In contrast, NF-kappaB inhibitor could significantly increase the sensitivity of tumor cells to the killing by nonstimulated or LPS-stimulated DCS: Our studies demonstrate that IFN-beta-stimulated DCs are functionally cytotoxic. Thus, an innate mechanism of DC-mediated antitumor immunity might exist in vivo in which DCs act as effectors to directly kill tumor cells partially via TRAIL. Subsequently, DCs act as APCs involved in the uptake, processing, and presentation of apoptotic tumor Ags to cross-prime CD8(+) CTL cells.  相似文献   

6.
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.  相似文献   

7.
Dendritic cells (DCs) are critical in initiating immune responses by cross-priming of tumor Ags to T cells. Previous results showed that NK cells inhibited DC-mediated cross-presentation of tumor Ags both in vivo and in vitro. In this study, enhanced Ag presentation was observed in draining lymph nodes in TRAIL(-/-) and DR5(-/-) mice compared with that of wild-type mice. NK cells inhibit DC cross-priming of tumor Ags in vitro, but not direct presentation of endogenous Ags. NK cells lacking TRAIL, but not perforin, were not able to inhibit DC cross-priming of tumor Ags. DCs that lack expression of TRAIL receptor DR5 were less susceptible to NK cell-mediated inhibition of cross-priming, and cross-linking of DR5 receptor led to reduced generation of MHC class I-Ag peptide complexes, followed by attenuated cross-priming of CD8(+) T cells. In addition, key molecules involved in the TRAIL/DR5 pathway during DC/NK cell interactions were determined. In summary, these data indicate a novel alternative pathway for DC/NK cell interactions in antitumor immunity and may reflect homeostasis of both DCs and NK cells for regulation of CD8(+) T cell function in physiological conditions.  相似文献   

8.
We have previously suggested that thymosin 1 (thy1), an immunomodulating thymic hormone, can activate tumor-associated macrophages to a tumoricidal state in a murine model bearing a transplantable T-cell lymphoma of spontaneous origin designated as Dalton's lymphoma (DL). Since tumor-infiltrating dendritic cells (DC) also play an important role in the host's antitumor response and are as such in an immunocompromised state in a tumor-bearing host, in the present investigation we studied if thy1 is able to influence the differentiation of tumor-associated macrophages (TAM) into DC with granulocyte macrophage colony stimulating factor (GM-CSF), interleukin (IL)-4 and tumor necrosis factor (TNF) and whether these TAM-derived DC show enhanced antitumor activity. It was observed that DC generated from thy1-administered tumor-bearing mice showed augmented antitumor activity in vitro. Adoptive immunotherapy using TAM-derived DC showed a significant delay in the tumor growth and a prolongation of the survival time in tumor-bearing mice. DC obtained from TAM of thy1-administered mice also produced an enhanced amount of cytokines like IL-1 and TNF-. This is the first study of its kind regarding the effect of thy1 on the differentiation of DC from TAM and the role of TAM-derived DC in tumor progression.  相似文献   

9.
The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as “IL-15 DCs”, with the capacity to stimulate NK cells. In a head-to-head comparison with “IL-4 DCs” used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on “gold-standard” IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.  相似文献   

10.
Cytokines that are induced by infection may contribute to the initiation of immune responses through their ability to stimulate dendritic cells (DCs). In this paper, we have addressed the role of IL-15 in DC activation, investigating its expression by DCs in response to three different signals of infection and examining its ability to stimulate DCs. We report that the expression of both IL-15 and the IL-15 receptor alpha-chain are increased in splenic DCs from mice inoculated with dsRNA (poly(I:C)), LPS, or IFN-alphabeta, and in purified murine splenic DCs treated with IFN-alphabeta in vitro. Furthermore, IL-15 itself was able to activate DCs, as in vivo or in vitro exposure of splenic DCs to IL-15 resulted in an up-regulation of costimulatory molecules, markedly increased production of IFN-gamma by DC and an enhanced ability of DCs to stimulate Ag-specific CD8(+) T cell proliferation. The magnitude of all of the IL-15-induced changes in DCs was reduced in mice deficient for the IFN-alphabeta receptor, suggesting a role for IFN-alphabeta in the stimulation of DCs by IL-15. These results identify IL-15 as a stimulatory cytokine for DCs with the potential for autocrine activity and link its effects to expression of IFN-alphabeta.  相似文献   

11.
Tumors exhibit a variety of strategies to dampen antitumor immune responses. With an aim to identify factors that are secreted from tumor cells, we performed an unbiased mass spectrometry-based secretome analysis in lung cancer cells. Interleukin-6 (IL-6) has been identified as a prominent factor secreted by tumor cells and cancer-associated fibroblasts isolated from cancer patients. Incubation of dendritic cell (DC) cultures with tumor cell supernatants inhibited the production of IL-12p70 in DCs but not the surface expression of other activation markers which is reversed by treatment with IL-6 antibody. Defects in IL-12p70 production in the DCs inhibited the differentiation of Th1 but not Th2 and Th17 cells from naïve CD4+ T cells. We also demonstrate that the classical mitogen-activated protein kinase, ERK5/MAPK7, is required for IL-6 production in tumor cells. Inhibition of ERK5 activity or depletion of ERK5 prevented IL-6 production in tumor cells, which could be exploited for enhancing antitumor immune responses.Subject terms: Cancer microenvironment, Extracellular signalling molecules  相似文献   

12.
Interleukin (IL)-27 is a member of the IL-6/IL-12 cytokine family and possesses potent antitumor activity, which is mediated by multiple mechanisms. Toll-like receptor (TLR)3 is the critical sensor of the innate immune system that serves to identify viral double-stranded RNA. TLR3 is frequently expressed by various types of malignant cells, and recent studies reported that a synthetic TLR3 agonist, polyinosinic-polycytidylic acid [poly(I:C)], induces antitumor effects on malignant cells. In the present study, we have explored the effect of IL-27 on human melanomas and uncovered a previously unknown mechanism. We found that IL-27 inhibits in vitro tumor growth of human melanomas and greatly enhances the expression of TNF-related apoptosis inducing ligand (TRAIL) in a dose-dependent manner. Neutralizing antibody against TRAIL partly but significantly blocked the IL-27–mediated inhibition of tumor growth. In addition, IL-27 and poly(I:C) cooperatively augmented TRAIL expression and inhibited tumor growth. The cooperative effect could be ascribed to the augmented expression of TLR3, but not retinoic acid-inducible gene-I or anti-melanoma differentiation-associated gene 5, by IL-27. The inhibition of tumor growth by the combination was also significantly abrogated by anti-TRAIL neutralizing antibody. Moreover, IL-27 and poly(I:C) cooperatively suppressed in vivo tumor growth of human melanoma in immunodeficient mice. Taken together, these results suggest that IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with poly(I:C), partly in a TRAIL-dependent manner. Thus, IL-27 and the combination of IL-27 and poly(I:C) may be attractive candidates for cancer immunotherapy.  相似文献   

13.
TNF-related apoptosis-inducing ligand (TRAIL), a new member of TNF family, induces apoptotic cell death of various tumor cells. We recently showed that TRAIL mediates perforin- and Fas ligand (FasL)-independent cytotoxic activity of human CD4+ T cell clones. In the present study, we investigated the expression and function of TRAIL on murine lymphocytes by using newly generated anti-murine TRAIL mAbs. Although freshly isolated T, B, or NK cells did not express a detectable level of TRAIL on their surface, a remarkable level of TRAIL expression was induced preferentially on CD3- NK1.1+ NK cells after stimulation with IL-2 or IL-15. In contrast, TRAIL expression was not induced by IL-18, whereas it efficiently potentiated lymphokine-activated killer activity of NK cells. In addition to perforin inactivation and neutralization of FasL by anti-FasL mAb, neutralization of TRAIL by anti-TRAIL mAb was needed for the complete inhibition of IL-2- or IL-15-activated NK cell cytotoxicity against mouse fibrosarcoma L929 target cells, which were susceptible to both FasL and TRAIL. These results indicated preferential expression of TRAIL on IL-2- or IL-15-activated NK cells and its potential involvement in lymphokine-activated killer activity.  相似文献   

14.
Pyruvate dehydrogenase kinase (PDK) inhibits pyruvate dehydrogenase (PDH) activity and thus promotes energetic switch from mitochondrial glucose oxidation to cytoplasmic glycolysis in cancerous cells (a phenomenon known as the 'Warburg effect') for their energy need, which facilitates the cancer progression by resisting induction of apoptosis and promoting tumor metastasis. Thus, in the present investigation, we explored the molecular mechanisms of the tumoricidal action of dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, on cells of a murine T cell lymphoma, designated as Dalton's lymphoma (DL). In vitro treatment of tumor cells with DCA inhibited their survival accompanied by a modulation of the biophysical composition of tumor-conditioned medium with respect to pH, glucose and lactate. DCA treatment also altered expression of HIF1-α and pH regulators: VATPase and MCT1 and production of cytokines: IL-10, IL-6 and IFN-γ. Moreover, we also observed an alteration in the expression of other apoptosis and cell survival regulatory molecules: PUMA, GLUT1, Bcl2, p53, CAD, caspase-3 and HSP70. The study discusses the role of novel molecular mechanisms underlying DCA-dependent inhibition of tumor cell survival. This study shows for the first time that DCA-dependent alteration of tumor cell survival involves altered pH homeostasis and glucose metabolism. Thus, these findings will provide a new insight for therapeutic applications of DCA as a novel antineoplastic agent against T cell lymphoma.  相似文献   

15.
Dendritic cells (DCs) encompass a heterogeneous population of cells capable of orchestrating innate and adaptive immune responses. The ability of DCs to act as professional APCs has been the foundation for the development and use of these cells as vaccines in cancer immunotherapy. DCs are also endowed with the nonconventional property of directly killing tumor cells. The current study investigates the regulation of murine DC cytotoxic function by T lymphocytes. We provide evidence that CD4(+) Th-1, but not Th-2, Th-17 cells, or regulatory T cells, are capable of inducing DC cytotoxic function. IFN-γ was identified as the major factor responsible for Th-1-induced DC tumoricidal activity. Tumor cell killing mediated by Th-1-activated killer DCs was dependent on inducible NO synthase expression and NO production. Importantly, Th-1-activated killer DCs were capable of presenting the acquired Ags from the killed tumor cells to T lymphocytes in vitro or in vivo. These observations offer new possibilities for the application of killer DCs in cancer immunotherapy.  相似文献   

16.
We tested whether modulation of the CNS-tumor microenvironment by delivery of IFN-alpha-transduced dendritic cells (DCs: DC-IFN-alpha) would enhance the therapeutic efficacy of peripheral vaccinations with cytokine-gene transduced tumor cells. Mice bearing intracranial GL261 glioma or MCA205 sarcoma received peripheral immunizations with corresponding irradiated tumor cells engineered to express IL-4 or GM-CSFs, respectively, as well as intratumoral delivery of DC-IFN-alpha. This regimen prolonged survival of the animals and induced tumor-specific CTLs that expressed TRAIL, which in concert with perforin and Fas ligand (FasL) was involved in the tumor-specific CTL activity of these cells. The in vivo antitumor activity associated with this approach was abrogated by administration of neutralizing mAbs against TRAIL or FasL and was not observed in perforin-/-, IFN-gamma-/-, or FasL-/- mice. Transduction of the tumor cells with antiapoptotic protein cellular FLIP rendered the gene-modified cells resistant to TRAIL- or FasL-mediated apoptosis and to CTL killing activity in vitro. Furthermore, the combination therapeutic regimen was ineffective in an intracranial cellular FLIP-transduced MCA205 brain tumor model. These results suggest that the combination of intratumoral delivery of DC-IFN-alpha and peripheral immunization with cytokine-gene transduced tumor cells may be an effective therapy for brain tumors that are sensitive to apoptotic signaling pathways.  相似文献   

17.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

18.
Current advances and expectations in tumor immunology]   总被引:7,自引:0,他引:7  
K Takeda  K Okumura 《Human cell》2001,14(3):159-163
Natural killer (NK) cells and Interferon (IFN)-gamma have been implicated in immune surveillance against tumor. We demonstrated the critical role of perforin in NK cell-mediated cytotoxic activity and anti-tumor effect in IFN-gamma inducible IL-12. And, we recently reported that TRAIL is constitutively expressed on a substantial proportion of murine NK cells in the liver, and which is responsible for spontaneous cytotoxicity and the anti-metastatic activity against TRAIL-sensitive tumor cells along with perforin and Fas ligand. Interestingly, the TRAIL expression on liver NK cells appeared to be regulated by endogenously produced IFN-gamma. Consisting with this finding, IL-12 and NKT cell specific ligand, alpha-Galactosylceramide (alpha-GalCer), induced TRAIL-mediated cytotoxcity and anti-tumor effect, and which was mediated by TRAIL expressed on IFN-gamma-activated NK cells. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF family, which preferentially induces apoptotic cell death in various tumor cells in vitro. Preclinical studies in mice and nonhuman primates have shown that administration of recombinant soluble forms of TRAIL could suppress the growth of TRAIL-sensitive tumor xenografts with no apparent systemic toxicity. These studies suggested a potential utility of TRAIL as a cancer therapeutic, although TRAIL expression at protein levels and its physiological roles in tumor surveillance has remained unknown. Presented findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.  相似文献   

19.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

20.
A T-cell hybridoma produced by fusion of concanavalin A-stimulated murine splenocytes produced a factor (MAFH) capable of activating tumoricidal capacity by responsive murine peritoneal macrophages. Macrophages treated with the MAFH required an additional trigger signal of bacterial lipopolysaccharide (LPS) for maximal activity. In contrast to interferon-gamma (IFN gamma), which induced tumoricidal activity against all tumor cells tested, MAFH only induced macrophage-mediated kill of the BI6P51 and 168 lines, and not of the P815 or B16BL6 lines. An identical pattern of tumoricidal activity was obtained by treating macrophages with recombinant interleukin-4 (IL-4). The active moiety of MAFH appeared to be IL-4 as (i) monoclonal antibody against IL-4 blocked MAFH, but not IFN gamma, activity, and (ii) the T-cell hybridoma contained large amounts of mRNA for IL-4 and no detectable mRNA for IFN gamma (as determined by Northern dot analysis). The pattern of tumoricidal activity observed may be due to an IL-4 mediated enhancement of tumor necrosis factor production by LPS-triggered macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号