首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

2.
The initiation of antitumor immunity relies on dendritic cells (DCs) to cross-present cell-associated tumor Ag to CD8(+) T cells (T(CD8+)) due to a lack of costimulatory molecules on tumor cells. Innate danger signals have been demonstrated to enhance cross-priming of T(CD8+) to soluble as well as virally encoded Ags; however, their effect on enhancing T(CD8+) cross-priming to cell genome-encoded Ags remains unknown. Furthermore, influenza A virus (IAV) has not been shown to enhance antitumor immunity. Using influenza-infected allogeneic cell lines, we show in this study that T(CD8+) responses to cell-associated Ags can be dramatically enhanced due to enhanced T(CD8+) expansion. This enhanced cross-priming in part involves TLR7- but not TLR3-mediated sensing of IAV and is entirely dependent on MyD88 and IFN signaling pathways. We also showed that the inflammasome-induced IL-1 and IFN-γ did not play a role in enhancing cross-priming in our system. We further demonstrated in our ex vivo system that CD8(+) DCs are the only APCs able to prime TCR-transgenic T(CD8+). Importantly, plasmacytoid DCs and CD8(-) DCs were both able to enhance such priming when provided in coculture. These observations suggest that IAV infection of tumor cells may facilitate improved cross-presentation of tumor Ags and may be used to augment clinical vaccine efficacy.  相似文献   

3.
Although endocytosed proteins are commonly presented via the class II MHC pathway to stimulate CD4(+) T cells, professional APCs can also cross-present Ags, whereby these exogenous peptides can be complexed with class I MHC for cross-priming of CD8(+) T cells. Whereas the ability of dendritic cells (DCs) to cross-present Ags is well documented, it is not known whether other APCs may also play a role, or what is the relative contribution of cross-priming to the induction of acquired immunity after DNA immunization. In this study, we compared immune responses generated after gene gun vaccination of mice with DNA vaccine plasmids driven by the conventional CMV promoter, the DC-specific CD11c promoter, or the keratinocyte-specific K14 promoter. The CD11c promoter achieved equivalent expression in CD11c(+) DCs in draining lymph nodes over time, as did a conventional CMV-driven plasmid. However, immunization with DC-restricted DNA vaccines failed to generate protective humoral or cellular immunity to model Ags influenza hemagglutinin and OVA, despite the ability of CD11c(+) cells isolated from lymph nodes to stimulate proliferation of Ag-specific T cells directly ex vivo. In contrast, keratinocyte-restricted vaccines elicited comparable T and B cell activity as conventional CMV promoter-driven vaccines, indicating that cross-priming plays a major role in the generation of immune responses after gene gun immunization. Furthermore, parallel studies in B cell-deficient mu-MT mice demonstrated that B lymphocytes, in addition to DCs, mediate cross-priming of Ag-specific T cells. Collectively, these data indicate that broad expression of the immunogen is required for optimal induction of protective acquired immunity.  相似文献   

4.
Recent studies have implicated a possible role for NK cells in regulating dendritic cells (DC) in vitro. In the present study, we demonstrate that immature DC are rapidly eliminated by NK cells in vivo via a pathway dependent on the TNF-related apoptosis-inducing ligand (TRAIL). Elimination of NK cells and/or neutralization of TRAIL function during immunization with immature DC loaded with nonself or tumor Ags significantly enhanced T cell responses to these Ags and Ag-specific tumor immunity. These data suggested that NK cell TRAIL might regulate responses to vaccination by controlling the survival of Ag-loaded DC.  相似文献   

5.
Respiratory tract dendritic cells (DCs) are juxtaposed to directly sample inhaled environmental particles. Processing and presentation of these airborne Ags could result in either the development of immunity or tolerance. The purpose of this study was to determine the consequences of cigarette smoke exposure on DC function in mice. We demonstrate that while cigarette smoke exposure decreased the number of DCs in the lungs, Ag-induced DC migration to the regional thoracic lymph nodes was unaffected. However, cigarette smoking suppressed DC maturation within the lymph nodes as demonstrated by reduced cell surface expression of MHC class II and the costimulatory molecules CD80 and CD86. Consequently, DCs from cigarette smoke-exposed animals had a diminished capacity to induce IL-2 production by T cells that was associated with diminished Ag-specific T cell proliferation in vivo. Smoke-induced defects in DC function leading to impaired CD4(+) T cell function could inhibit tumor surveillance and predispose patients with chronic obstructive pulmonary disease to infections and exacerbations.  相似文献   

6.
Dendritic cell-induced activation of adaptive and innate antitumor immunity   总被引:21,自引:0,他引:21  
While studying Ag-pulsed syngeneic dendritic cell (DC) immunization, we discovered that surprisingly, unpulsed DCs induced protection against tumor lung metastases resulting from i.v. injection of a syngeneic BALB/c colon carcinoma CT26 or a syngeneic C57BL/6 lung carcinoma LL/2. Splenocytes or immature splenic DCs did not protect. The protection was mediated by NK cells, in that it was abrogated by treatment with anti-asialo-GM1 but not anti-CD8, and was induced by CD1(-/-) DCs unable to stimulate NKT cells, but did not occur in beige mice lacking NK cells. Protection correlated with increased NK activity, and increased infiltration of NK but not CD8(+) cells in lungs of tumor-bearing mice. Protection depended on the presence of costimulatory molecules CD80, CD86, and CD40 on the DCs, but surprisingly did not require DCs that could make IL-12 or IL-15. Unexpectedly, protection sensitive to anti-asialo-GM1 and increased NK activity were still present 14 mo after DC injection. As NK cells lack memory, we found by depletion that CD4(+) not CD8(+) T cells were required for induction of the NK antitumor response. The role of DCs and CD4(+) T cells provides a novel mechanism for NK cell induction and innate immunity against cancer that may have potential in preventing clinical metastases.  相似文献   

7.
In the present study we evaluated the role of IFN-alpha in the generation of dendritic cells (IFN-DCs) with priming activity on CD8(+) T lymphocytes directed against human tumor Ags. A 3-day treatment of monocytes, obtained as adherent PBMCs from HLA-A*0201(+) healthy donors, with IFN-alpha and GM-CSF led to the differentiation of DCs displaying a semimature phenotype, but promptly inducing CD8(+) T cell responses after one in vitro sensitization with peptides derived from melanoma (gp100(209-217) and MART-1/Melan-A(27-35)) and adenocarcinoma (CEA(605-613)) Ags. However, these features were lost when IFN-DCs were generated from immunosorted CD14(+) monocytes. The ability of adherent PBMCs to differentiate into IFN-DCs expressing higher levels of costimulatory molecules and exerting efficient T cell priming capacity was associated with the presence of contaminating NK cells, which underwent phenotypic and functional activation upon IFN-alpha treatment. NK cell boost appeared to be mediated by both direct and indirect (i.e., mediated by IFN-DCs) mechanisms. Experiments performed to prove the role of contaminating NK cells in DC differentiation showed that IFN-DCs generated in the absence of NK were phenotypically less mature and could not efficiently prime antitumor CD8(+) lymphocytes. Reciprocally, IFN-DCs raised from immunosorted CD14(+) monocytes regained their T cell priming activity when NK cells were added to the culture before IFN-alpha and GM-CSF treatment. Together, our data suggest that the ability of IFN-DCs to efficiently prime anti-tumor CD8(+) T lymphocytes relied mostly on the positive cross-talk occurring between DCs and NK cells upon stimulation with IFN-alpha.  相似文献   

8.
Substantial CD8(+) T cell responses are generated after infection of mice with recombinant Listeria monocytogenes strains expressing a model epitope (lymphocytic choriomeningitis virus NP(118-126)) in secreted and nonsecreted forms. L. monocytogenes gains access to the cytosol of infected cells, where secreted Ags can be accessed by the endogenous MHC class I presentation pathway. However, the route of presentation of the nonsecreted Ag in vivo remains undefined. In this study we show that neutrophil-enriched peritoneal exudate cells from L. monocytogenes-infected mice can serve as substrates for in vitro cross-presentation of both nonsecreted and secreted Ag by dendritic cells as well as for in vivo cross-priming of CD8(+) T cells. In addition, specific neutrophil depletion in vivo by low dose treatment with either of two Ly6G-specific mAb substantially decreased the relative CD8(+) T cell response against the nonsecreted, but not the secreted, Ag compared with control Ab-treated mice. Thus, neutrophils not only provide rapid innate defense against infection, but also contribute to shaping the specificity and breadth of the CD8(+) T cell response. In addition, cross-presentation of bacterial Ags from neutrophils may explain how CD8(+) T cell responses are generated against Ags from extracellular bacterial pathogens.  相似文献   

9.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

10.
TNF-alpha-related apoptosis-inducing ligand (TRAIL) is characterized by its preferential induction of apoptosis of tumor cells but not normal cells. Dendritic cells (DCs), besides their role as APCs, now have been demonstrated to exert cytotoxicity or cytostasis on some tumor cells. Here, we report that both human CD34(+) stem cell-derived DCs (CD34DCs) and human CD14(+) monocyte-derived DCs (MoDCs) express TRAIL and exhibit cytotoxicity to some types of tumor cells partially through TRAIL. Moderate expression of TRAIL appeared on CD34DCs from the 8th day of culture and was also seen on freshly isolated monocytes. The level of TRAIL expression remained constant until DC maturation. TRAIL expression on immature CD34DCs or MoDCs was greatly up-regulated after IFN-beta stimulation. Moreover, IFN-beta could strikingly enhance the ability of CD34DCs or MoDCs to kill TRAIL-sensitive tumor cells, but LPS did not have such an effect. The up-regulation of TRAIL on IFN-beta-stimulated DCs partially contributed to the increased cytotoxicity of DCS: Pretreatment of TRAIL-sensitive tumor cells with caspase-3 inhibitor could significantly increase their resistance to the cytotoxicity of IFN-beta-stimulated DCS: In contrast, NF-kappaB inhibitor could significantly increase the sensitivity of tumor cells to the killing by nonstimulated or LPS-stimulated DCS: Our studies demonstrate that IFN-beta-stimulated DCs are functionally cytotoxic. Thus, an innate mechanism of DC-mediated antitumor immunity might exist in vivo in which DCs act as effectors to directly kill tumor cells partially via TRAIL. Subsequently, DCs act as APCs involved in the uptake, processing, and presentation of apoptotic tumor Ags to cross-prime CD8(+) CTL cells.  相似文献   

11.
Cross-presentation allows the processing of Ags from donor cells into the MHC class I presentation pathway of dendritic cells (DCs). This is important for the generation of cytotoxic T cell immunity and for induction of self tolerance. Apoptotic cells are reported to be efficient targets for cross-presentation, and in vitro studies using human DCs have implicated CD36 in their capture. In support of a role for CD36 in cross-presentation, we show that this molecule is differentially expressed by CD8(+) splenic DCs, which previously have been identified as responsible for cross-presentation in the mouse. Three different cross-presentation models were examined for their dependence on CD36. These included cross-priming to OVA-coated spleen cells and cross-tolerance to OVA transgenically expressed in the pancreatic islet beta cells under constitutive conditions or during beta cell destruction. In these models, CD36 knockout DCs were equivalent to wild-type DCs in their capacity to cross-present either foreign or self Ags, indicating that CD36 is not essential for cross-presentation of cellular Ags in vivo.  相似文献   

12.
13.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

14.
CD4(+)CD25(+) regulatory T cells (Treg) are potent immunosuppressive cells active in controlling normal pathological immune responses. The mechanisms of this suppression have been investigated under various conditions. In this report, tumor necrosis factor-related apoptosis inducing ligand (TRAIL)/death receptor 5 (DR5) was explored as one of the pivotal factors for the suppression and cytotoxicity induced by CD4(+)CD25(+) Treg. Cell death was involved in the suppression induced by activated CD4(+)CD25(+) Treg in vitro. The induction of CD4(+) T cell death was not mediated by the CD95/CD95L pathway, but rather depended upon the upregulation of TRAIL in the Treg. Blocking the TRAIL/DR5 pathway resulted in a significant reduction of the suppressive activity as well as the cytotoxic effects of Treg in vitro. Activated Treg displayed TRAIL-dependent cytotoxicity against CD4(+) T cells in vivo. The prolonged survival of allogeneic skin grafts induced by Treg was inhibited by DR5-blocking antibodies. Our findings suggest that the TRAIL/DR5 pathway is one of the mechanisms used by Treg to regulate immune responses both in vitro and in vivo.  相似文献   

15.
Dendritic cells (DC) are key regulators of T cell immunity and tolerance. NKT cells are well-known enhancers of Th differentiation and regulatory T cell function. However, the nature of the DC directing T and NKT cell activation and polarization as well as the role of the respective CD1d Ags presented is still unclear. In this study, we show that peptide-specific CD4(+)IL-10(+) T cell-mediated full experimental autoimmune encephalomyelitis (EAE) protection by TNF-treated semimatured DCs was dependent on NKT cells recognizing an endogenous CD1d ligand. NKT cell activation by TNF-matured DCs induced high serum levels of IL-4 and IL-13 which are absent in NKT cell-deficient mice, whereas LPS plus anti-CD40-treated fully mature DCs induce serum IFN-gamma. In the absence of IL-4Ralpha chain signaling or NKT cells, no complete EAE protection was achieved by TNF-DCs, whereas transfer of NKT cells into Jalpha281(-/-) mice restored it. However, activation of NKT cells alone was not sufficient for EAE protection and early serum Th2 deviation. Simultaneous activation of NKT cells and CD4(+) T cells by the same DC was required for EAE protection. Blocking experiments demonstrated that NKT cells recognize an endogenous glycolipid presented on CD1d on the injected DC. Together, this indicates that concomitant and interdependent presentation of MHC II/self-peptide and CD1d/self-isoglobotrihexosylceramide to T and NKT cells by the same partially or fully matured DC determines protective and nonprotective immune responses in EAE.  相似文献   

16.
Dendritic cells (DC) and other APCs rely on a number of specialized receptors to facilitate the uptake and intracellular accumulation of Ags. In this capacity, APCs use receptor-mediated endocytosis to enhance Ag presentation and the stimulation of Ag-specific T cells. Studies have demonstrated that the targeted delivery of Ags in vivo to CD91/the low-density lipoprotein receptor-related protein (CD91/LRP) induces enhanced activation of the adaptive immune system. However, the APC that mediates these augmented, Ag-specific responses remains to be characterized. In this study, we show that a subset of CD11c(+) lineage-negative (lin(-)) DC expresses the scavenger receptor CD91/LRP and that these rare APC are primarily responsible for the T cell activation that occurs following CD91/LRP-mediated Ag uptake in whole blood. The targeting of Ags to CD91/LRP results in enhanced receptor-mediated uptake within both lin(-) DCs and monocytes, and this uptake results in markedly increased T cell activation. Finally, purified cellular populations were used to demonstrate that CD11c(+) lin(-) DC, but not monocytes, are capable of stimulating T cell activation following CD91/LRP-mediated Ag uptake. Therefore, CD11c(+) lin(-) DC use CD91/LRP to facilitate the uptake and subsequent presentation of an array of Ags complexed within the CD91/LRP ligand, the activated form of alpha2-macroglobulin (alpha2M*).  相似文献   

17.
Although the anterior chamber of the eye expresses immune privilege, some ocular tumors succumb to immune rejection. Previous studies demonstrated that adenovirus-induced tumors, adenovirus type 5 early region 1 (Ad5E1), underwent immune rejection following transplantation into the anterior chamber of syngeneic mice. Intraocular tumor rejection required CD4(+) T cells, but did not require the following: 1) CD8(+) T cells, 2) B cells, 3) TNF, 4) perforin, 5) Fas ligand, or 6) NK cells. This study demonstrates that CD4(+) T cell-dependent tumor rejection does not occur in IFN-gamma-deficient mice. Ad5E1 tumor cells expressed DR5 receptor for TRAIL and were susceptible to TRAIL-induced apoptosis. Although IFN-gamma did not directly induce apoptosis of the tumor cells, it rendered them 3-fold more susceptible to TRAIL-induced apoptosis. Both CD4(+) T cells and corneal endothelial cells expressed TRAIL and induced apoptosis of Ad5E1 tumor cells. The results suggest that Ad5E1 tumor rejection occurs via TRAIL-induced apoptosis as follows: 1) tumor cells express TRAIL-R2 and are susceptible to TRAIL-induced apoptosis, 2) IFN-gamma enhances TRAIL expression on CD4(+) T cells and ocular cells, 3) IFN-gamma enhances tumor cell susceptibility to TRAIL-induced apoptosis, 4) apoptotic tumor cells are found in the eyes of rejector mice, but not in the eyes of IFN-gamma knockout mice that fail to reject intraocular tumors, 5) CD4(+) T cells and corneal endothelial cells express TRAIL and induce apoptosis of tumor cells, and 6) apoptosis induced by either CD4(+) T cells or corneal cells can be blocked with anti-TRAIL Ab.  相似文献   

18.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

19.
Uterine dendritic cells (DCs) are critical for activating the T cell response mediating maternal immune tolerance of the semiallogeneic fetus. GM-CSF (CSF2), a known regulator of DCs, is synthesized by uterine epithelial cells during induction of tolerance in early pregnancy. To investigate the role of GM-CSF in regulating uterine DCs and macrophages, Csf2-null mutant and wild-type mice were evaluated at estrus, and in the periconceptual and peri-implantation periods. Immunohistochemistry showed no effect of GM-CSF deficiency on numbers of uterine CD11c(+) cells and F4/80(+) macrophages at estrus or on days 0.5 and 3.5 postcoitum, but MHC class II(+) and class A scavenger receptor(+) cells were fewer. Flow cytometry revealed reduced CD80 and CD86 expression by uterine CD11c(+) cells and reduced MHC class II in both CD11c(+) and F4/80(+) cells from GM-CSF-deficient mice. CD80 and CD86 were induced in Csf2(-/-) uterine CD11c(+) cells by culture with GM-CSF. Substantially reduced ability to activate both CD4(+) and CD8(+) T cells in vivo was evident after delivery of OVA Ag by mating with Act-mOVA males or transcervical administration of OVA peptides. This study shows that GM-CSF regulates the efficiency with which uterine DCs and macrophages activate T cells, and it is essential for optimal MHC class II- and class I-mediated indirect presentation of reproductive Ags. Insufficient GM-CSF may impair generation of T cell-mediated immune tolerance at the outset of pregnancy and may contribute to the altered DC profile and dysregulated T cell tolerance evident in infertility, miscarriage, and preeclampsia.  相似文献   

20.
The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号