首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AKT signaling is modulated by a complex network of regulatory proteins and is commonly deregulated in cancer. Here, we present a dual mechanism of AKT regulation by the ERBB receptor feedback inhibitor 1 (ERRFI1). We show that in cells expressing high levels of EGFR, ERRF1 inhibits growth and enhances responses to chemotherapy. This is mediated in part through the negative regulation of AKT signaling by direct ERRFI1‐dependent inhibition of EGFR. In cells expressing low levels of EGFR, ERRFI1 positively modulates AKT signaling by interfering with the interaction of the inactivating phosphatase PHLPP with AKT, thereby promoting cell growth and chemotherapy desensitization. These observations broaden our understanding of chemotherapy response and have important implications for the selection of targeted therapies in a cell context‐dependent manner. EGFR inhibition can only sensitize EGFR‐high cells for chemotherapy, while AKT inhibition increases chemosensitivity in EGFR‐low cells. By understanding these mechanisms, we can take advantage of the cellular context to individualize antineoplastic therapy. Finally, our data also suggest targeting of EFFRI1 in EGFR‐low cancer as a promising therapeutic approach.  相似文献   

2.
Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.  相似文献   

3.
Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.  相似文献   

4.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

5.
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.  相似文献   

6.
Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N‐RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP‐BEZ235. The two‐drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl‐2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p‐ERK, p‐AKT, p‐S6, and 4E‐BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation.  相似文献   

7.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

8.
9.
HER2, a member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we applied a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2 and their downstream activation of ERK to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we could separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrated that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activate ERK were quantitatively equivalent. We found that HER2-mediated effects on EGFR dimerization and trafficking were sufficient to explain the observed HER2-mediated amplification of epidermal growth factor-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared with the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking yielding increased EGFR sparing cause the sustained HER2-mediated enhancement of ERK signaling.  相似文献   

10.
Dedifferentiation, a process by which differentiated cells become mesenchymal‐like proliferating cells, is the first step in renal epithelium repair and occurs in vivo after acute kidney injury and in vitro in primary culture. However, the underlying mechanism remains poorly understood. In this report, we studied the signaling events that mediate dedifferentiation of proximal renal tubular cells (RPTC) in primary culture. RPTC dedifferentiation characterized by increased expression of vimentin concurrent with decreased expression of cytokeratin‐18 was observed at 24 h after the initial plating of freshly isolated proximal tubules and persisted for 72 h. At 96 h, RPTC started to redifferentiate as revealed by reciprocal expression of cytokeratin‐18 and vimentin and completed at 120 h. Phosphorylation levels of Src, epidermal growth factor receptor (EGFR), AKT (a target of phosphoinositide‐3‐kinase (PI3K)), and ERK1/2 were increased in the early time course of culture (<72 h). Inhibition of Src family kinases (SFKs) with PP1 blocked EGFR, AKT, and ERK1/2 phosphorylation, as well as RPTC dedifferentiation. Inhibition of EGFR with AG1478 also blocked AKT and ERK1/2 phosphorylation and RPTC dedifferentiation. Although inactivation of the PI3K/AKT pathway with LY294002 inhibited RPTC dedifferentiation, blocking the ERK1/2 pathway with U0126 did not show such an effect. Moreover, inhibition of SFKs, EGFR, PI3K/AKT, but not ERK1/2 pathways abrogated RPTC outgrowth and SFK inhibition decreased RPTC proliferation and migration. These findings demonstrate a critical role of SFKs in mediating RPTC dedifferentiation through activation of the EGFR/PI3K signaling pathway. J. Cell. Physiol. 227: 2138–2144, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The use of platinum complexes for the therapy of breast cancer is an emerging new treatment modality. To gain insight into the mechanisms underlying cisplatin resistance in breast cancer, we used estrogen receptor-positive MCF-7 cells as a model system. We generated cisplatin-resistant MCF-7 cells and determined the functional status of epidermal growth factor receptor (EGFR), MAPK, and AKT signaling pathways by phosphoreceptor tyrosine kinase and phospho-MAPK arrays. The cisplatin-resistant MCF-7 cells are characterized by increased EGFR phosphorylation, high levels of AKT1 kinase activity, and ERK1 phosphorylation. In contrast, the JNK and p38 MAPK modules of the MAPK signaling pathway were inactive. These conditions were associated with inactivation of the p53 pathway and increased BCL-2 expression. We investigated the expression of genes encoding the ligands for the ERBB signaling cascade and found a selective up-regulation of amphiregulin expression, which occurred at later stages of cisplatin resistance development. Amphiregulin is a specific ligand of the EGFR (ERBB1) and a potent mitogen for epithelial cells. After exposure to cisplatin, the resistant MCF-7 cells secreted amphiregulin protein over extended periods of time, and knockdown of amphiregulin expression by specific short interfering RNA resulted in a nearly complete reversion of the resistant phenotype. To demonstrate the generality and importance of our findings, we examined amphiregulin expression and cisplatin resistance in a variety of human breast cancer cell lines and found a highly significant correlation. In contrast, amphiregulin levels did not significantly correlate with cisplatin resistance in a panel of lung cancer cell lines. We have thus identified a novel function of amphiregulin for cisplatin resistance in human breast cancer cells.  相似文献   

12.
13.
Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways.  相似文献   

14.
15.
BackgroundIt has been known epidermal growth factor receptor (EGFR) frequently overexpressed in cervical cancer. High levels of EGFR expression in their tumors leads to a poor prognosis and inhibition frequently induces autophagy in cancer cells. This study aimed to investigate whether EGFR inhibition by canertinib induces autophagy and this induction influence the effect of Palladium (Pd) (II) complex and 5-fluorouracil (5-FU) especially in nontoxic doses.MethodsCytotoxicity was evaluated by using SRB assay. Apoptosis, autophagy, and EGFR key markers were determined by flow cytometry, fluorescence staining, and immunoblotting. Colony formation, invasion, and wound healing assays were performed to investigate cell proliferation, invasion, and migration, respectively.ResultsBlocking EGFR by the pan-ErbB tyrosine kinase inhibitor canertinib inhibited cell growth of HeLa cervical cancer cells in combination with Pd(II) complex and 5-FU. Combination of canertinib and Pd(II) complex promotes autophagy and apoptosis of HeLa cancer cells via blockade of the PI3K/AKT and MAPK/ERK pathway, which leads to cervical cancer cell death. ROS accumulation and DNA damage were increased after combinatorial treatment which causes depolarization of the mitochondrial inner membrane and leads to apoptotic cell death. Canertinib combined with Pd(II) complex leads to inhibition of migration and invasion.ConclusionInhibition of EGFR signaling by canertinib in combination with Pd(II) complex promotes apoptosis and autophagy via blockade of the PI3K/AKT and MAPK/ERK.General significanceThe cytotoxic activity of Pd(II) complex and 5-FU on HeLa cells is mediated by EGFR inhibition and autophagy induction, leading to activation of mitochondrial apoptotic cell death.  相似文献   

16.
The subcellular localization of RAS GTPases defines the operational compartment of the EGFR-ERK1/2 signaling pathway within cells. Hence, we used live-cell imaging to demonstrate that endogenous KRAS and NRAS tagged with mNeonGreen are predominantly localized to the plasma membrane. NRAS was also present in the Golgi apparatus and a tubular, plasma-membrane derived endorecycling compartment, enriched in recycling endosome markers (TERC). In EGF-stimulated cells, there was essentially no colocalization of either mNeonGreen-KRAS or mNeonGreen-NRAS with endosomal EGFR, which, by contrast, remained associated with endogenous Grb2-mNeonGreen, a receptor adaptor upstream of RAS. ERK1/2 activity was diminished by blocking cell surface EGFR with cetuximab, even after most ligand-bound, Grb2-associated EGFRs were internalized. Endogenous mCherry-tagged RAF1, an effector of RAS, was recruited to the plasma membrane, with subsequent accumulation in mNG-NRAS–containing TERCs. We propose that a small pool of surface EGFRs sustain signaling within the RAS-ERK1/2 pathway and that RAS activation persists in TERCs, whereas endosomal EGFR does not significantly contribute to ERK1/2 activity.  相似文献   

17.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

18.
表皮生长因子受体与肺脏发育的关系   总被引:1,自引:0,他引:1  
Li HJ  Liu Y  Hao HS  DU WH  Zhao XM  Wang D  Qin T  Ma YJ  Zhu HB 《遗传》2012,34(1):27-32
表皮生长因子受体(Epidermal growth factor receptor,EGFR)是一种跨膜蛋白受体,是ErbB家族成员之一,具有酪氨酸激酶活性。EGFR与相应的配体结合引起EGFR形成同源或异源二聚体启动胞内信号转导,激活下游多种信号转导途径,产生生物学效应,RAS/RAF/MEK/ERK通路与细胞增殖、分化和凋亡有关;PI3K/PDK1/AKT通路与细胞的迁移和粘附有关。EGFR能促进肺泡II型上皮细胞的成熟和肺表面活性物质的合成、分泌。EGFR对哺乳动物肺脏的作用呈现时空效应及剂量依赖效应,EGFR的下调表达则会引起肺脏发育不成熟;而EGFR过度表达促进肺肿瘤细胞的增殖、侵袭和转移。文章综述了EGFR及其调节信号通路的研究进展,以及EGFR与动物肺脏发育不成熟和肺癌之间的关系。  相似文献   

19.
20.
Sustained cell migration is essential for wound healing and cancer metastasis. The epidermal growth factor receptor (EGFR) signaling cascade is known to drive cell migration and proliferation. While the signal transduction downstream of EGFR has been extensively investigated, our knowledge of the initiation and maintenance of EGFR signaling during cell migration remains limited. The metalloprotease TACE (tumor necrosis factor alpha converting enzyme) is responsible for producing active EGFR family ligands in the via ligand shedding. Sustained TACE activity may perpetuate EGFR signaling and reduce a cell’s reliance on exogenous growth factors. Using a cultured keratinocyte model system, we show that depletion of α-catenin perturbs adherens junctions, enhances cell proliferation and motility, and decreases dependence on exogenous growth factors. We show that the underlying mechanism for these observed phenotypical changes depends on enhanced autocrine/paracrine release of the EGFR ligand transforming growth factor alpha in a TACE-dependent manner. We demonstrate that proliferating keratinocyte epithelial cell clusters display waves of oscillatory extracellular signal–regulated kinase (ERK) activity, which can be eliminated by TACE knockout, suggesting that these waves of oscillatory ERK activity depend on autocrine/paracrine signals produced by TACE. These results provide new insights into the regulatory role of adherens junctions in initiating and maintaining autocrine/paracrine signaling with relevance to wound healing and cellular transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号