首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We executed this research to understand the importance of decaying woods as the diverse arthropods' habitat in Abies koreana forests of Mt. Hallasan, Korea, from 2013 April to 2014 July. We discriminated the Abies koreana forests into one live stage and three decay stages in three blocks (Sungpanak, Yeongsil, Donnaeko) with three replicates and collected arthropods using an emergence trap per tree. We also used the different slope, altitude, decay stage and characteristics of dead wood as statistical variables. As A result, a total of six classes 23 orders 99 families 224 species (69,674 individuals) were collected from 282 emergence traps. We found that there were significant differences in abundance among decay stages and study sites. Our research results would be relevant for developing the ecologically sustainable forest management strategies and we expect these results would be used as the basic data for the forest management plans of Abies koreana.  相似文献   

2.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

3.
Eucalypts are among the most widely planted forest trees in the world, and outside their native Australian range, the main arthropod pests are sap‐sucking insects, defoliators, gall‐making insects and xylophagous beetles. We report on a new association between a polyphagous wood‐boring beetle and Tasmanian blue gum (Eucalyptus globulus Labill.) in Central Portugal. Unidentified wood‐boring insects were found attacking two three‐year‐old E. globulus trees showing signs of decline among otherwise healthy trees in a commercial plantation, in June 2018. Declining trees presented dead twigs and branches, and recently developed epicormic sprouts evident on the trunks. Insects emerging from logs were identified as Ambrosiodmus rubricollis (Eichhoff), a species native to eastern and southern Asia, with the taxonomic identification validated by molecular analysis. To our knowledge, this is the first record of A. rubricollis associated with a eucalypt species worldwide. It is not clear whether the beetles played any significant role on the decline of the trees, but Ambrosiodmus may be potential pests for several tree and shrub species in Europe, as these beetles can transport pathogenic fungi.  相似文献   

4.
The relationship between myxomycete species and the decay stage of wood of Pinus densiflora coarse woody debris was investigated in warm temperate secondary forests of western Japan. The number of species and species diversity of the myxomycete community reached the maximum on moderately decayed wood. The 25 dominant species recorded from 8 or more samples of the total 1530 samples were arranged in order of the succession index corresponding to the stage of decay. Species on slightly decayed hard pine wood were characterized by Stemonitis splendens, Enerthenema papillatum, and Physarum viride, whereas species of Cribrariaceae were found on brittle decayed soft wood increasing abundance according to the decay stages. Most of the species occurred where there was sufficient moisture preserved in the environment of the decaying wood, although S. splendens specifically emerged in low-moisture environments. Because the myxomycete species had preference to different decay stages of wood, it appears that they change sequentially during myxomycete community succession on dead pine wood according to the progression of decay.  相似文献   

5.
The terminology of ecological groups in saproxylic insects (organisms depending on dying or dead wood) is used ambiguously by forest entomologists. We therefore propose a standardized typology of wood-eating groups, based on two crossed factors, i.e. nature and physiological status of woody tissues. We define primary and secondary xylophagous insects (corticiphagous, cambiophagous, xylemophagous), as well as saproxylophagous species. Insects indirectly related to dead wood are classified according to (i) the food regime: consumers of wood-associated resources (xylomycophagous, xylomycetophagous, opophagous), commensals (scavengers), predators, or (ii) the microhabitat users (fongicolous, cavicolous, succicolous).  相似文献   

6.
Primary succession on bare ground surrounded by intact ecosystems is, during its first stages, characterized by predator‐dominated arthropod communities. However, little is known on what prey sustains these predators at the start of succession and which factors drive the structure of these food webs. As prey availability can be extremely patchy and episodic in pioneer stages, trophic networks might be highly variable. Moreover, the importance of allochthonous versus autochthonous food sources for these pioneer predators is mostly unknown. To answer these questions, the gut content of 1,832 arthropod predators, including four species of carabid beetles, two lycosid and several linyphiid spider species caught in early and late pioneer stages of three glacier forelands, was screened molecularly to track intraguild and extraguild trophic interactions among all major prey groups occurring in these systems. Two‐thirds of the 2,310 identified food detections were collembolans and intraguild prey, while one‐third were allochthonous flying insects. Predator identity and not successional stage or valley had by far the strongest impact on the trophic interaction patterns. Still, the variability of prey spectra increased significantly from early to late pioneer stage, as did the niche width of the predators. As such the structure of pioneer arthropod food webs in recently deglaciated Alpine habitats seems to be driven foremost by predator identity while site and early successional effects contribute to a lesser extent to food web variability. Our findings also suggest that in these pioneer sites, predatory arthropods depend less on allochthonous aeolian prey but are mainly sustained by prey of local production.  相似文献   

7.
Although several studies demonstrated the importance of dead wood for lichen conservation in N-Europe and N-America, the lichen biota on dead wood was poorly studied in the Alps, where stumps represent one of the main available dead wood type. This work aims at evaluating species richness and composition of lichens in relation to the decay of stumps in subalpine forests of the Italian Alps. Differences in species richness between three decay stages were tested using a one-way ANOVA, while the pattern of species composition was evaluated with non-metric multidimensional scaling and an Indicator Species Analysis. Overall, 69 species were found and wood decay proved to be an important factor influencing lichen communities on stumps in our subalpine forests. Despite the fact that the mean number of species per stump did not differ between the three decay stages and lichen communities broadly overlapped, a main pattern of species turnover was identified across wood decay process as well as some indicator species for each decay stage. During the decay process, lichen communities change functional and ecological composition as an adaptive response to the continuous change of substrate. Since stumps host several nationally rare species, which are related to different stages of decay, they could have a relevant role in lichen conservation in managed forests where other types of dead wood are normally absent.  相似文献   

8.
双季稻区两类生境稻田节肢动物群落结构比较   总被引:4,自引:0,他引:4  
刘雨芳  古德祥 《生态科学》2004,23(3):196-199,203
用吸虫器采样法,对双季稻区中处于多样化生境及单一生境中的两类稻田中的节肢动物群落结构特征进行了比较研究。结果表明:在早稻生长发育初期和晚稻生长全期,多样化生境稻田中捕食性节肢动物的物种数和个体数量都显著高于单一化生境稻田。同时,多样化生境中稻田植食性昆虫的物种丰富度高于单一化生境稻田,但其个体数量较低。非稻田生境主要作为稻田捕食性节肢动物群落的种库,能促进稻田捕食性节肢动物群落的重建。  相似文献   

9.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

10.
Aquatic insects link adjacent ecosystems by transporting nutrients, energy, and material as they move from bodies of water into terrestrial habitats. Insects emerging from streams and rivers are known to benefit arthropod predators such as spiders, but their influence may extend to other arthropod feeding groups as well. We conducted a terrestrial arthropod survey at a series of lakes spanning a strong gradient of midge (Chironomidae, Diptera) emergence. These small, short‐lived insects reach high densities in some areas such that their carcasses litter the ground, and serve as a potential resource for non‐predatory arthropods. Our study revealed that arthropod assemblages in areas of high midge density were significantly different from those with few midges, the result of an increase of all taxa rather than changes in taxonomic composition. Eight of nine terrestrial arthropod taxa sampled showed a strong positive response to the presence of midges including detritivores and herbivores in addition to predators. Taxa that could consume living or dead midges directly responded especially strongly to midge gradients. Our results strongly suggest that midges enter the terrestrial arthropod food web through multiple pathways, increasing numbers of a wide range of arthropods. Furthermore, they emphasize the importance of lakes as sources of aquatic insects that significantly alter processes in the neighboring terrestrial environment.  相似文献   

11.
The structure and composition of the soil micro‐arthropod communities of five postmining rehabilitating sites (between 1 and 24 years after rehabilitation) are compared with that of an undisturbed dune forest benchmark. We extracted soil micro‐arthropods (Acari and insects) with a modified Berlese–Tullgren funnel and used soil carbon, calcium, potassium, magnesium, nitrogen, sodium, phosphorous and acidity (pH) as explanatory variables of micro‐arthropod community composition. Acari accounted for the majority of all the micro‐arthropods (between 65 and 97% of the sample) at the different sites. Density, richness, diversity and composition showed significant differences between the unmined benchmark site and the rehabilitating sites for both insects and Acari, with weak habitat‐age related patterns. Canonical Correspondence Analysis suggests that differences between samples from regenerating sites and those from the benchmark sites slowly decrease with increasing regeneration age, but that community composition is only weakly related to soil properties. Our results suggest that coastal dune forest rehabilitation could give rise to the regeneration of micro‐arthropod assemblages, but it may take a long time. Therefore, potential limiting factors for community regeneration need to be identified to improve the chances for successful restoration.  相似文献   

12.
Wood-feeding insects play important functional roles in forest ecosystems, contributing significantly to wood decay processes. However, sampling these species in a direct and quantitative way is difficult because they live most of their lives as larvae deep into the wood; knowledge of species-specific host-use patterns along the decay gradient is thus lacking in this group. To cope with these difficulties, we used a novel approach, snag dissection, to investigate occurrence patterns of such Coleoptera adults and larvae. We selected 80 snags of both black spruce and aspen along four classes of decay in five different stands distributed over the tree species' ranges within the province of Quebec, Canada, and dissected a one-meter section of each. All adults and larvae of Buprestidae, Cerambycidae and Scolytinae (Coleoptera: Curculionidae) were collected and identified to the lowest taxonomical level possible. Wood density and snag age were also calculated for each sampled snag. In black spruce, host-use was mostly concentrated at the beginning of the decay gradient. Patterns observed in aspen were opposite, as few insects were found in fresh snags, while most snags in middle to late stages of decay contained insects, often in large numbers, in some reaching densities of over 1000 cerambycid larvae m−3. For both tree species, patterns observed were similar across regions sampled. Differences in host-use patterns between the coniferous and deciduous host species may be due to differences in secondary chemistry, mechanical defence mechanisms or the stand dynamics typically associated with each tree species.  相似文献   

13.
Terrestrial arthropods comprise the most species‐rich communities on Earth, and grassland flowers provide resources for hundreds of thousands of arthropod species. Diverse grassland ecosystems worldwide are threatened by various types of environmental change, which has led to decline in arthropod diversity. At the same time, monitoring grassland arthropod diversity is time‐consuming and strictly dependent on declining taxonomic expertise. Environmental DNA (eDNA) metabarcoding of complex samples has demonstrated that information on species compositions can be efficiently and non‐invasively obtained. Here, we test the potential of wild flowers as a novel source of arthropod eDNA. We performed eDNA metabarcoding of flowers from several different plant species using two sets of generic primers, targeting the mitochondrial genes 16S rRNA and COI. Our results show that terrestrial arthropod species leave traces of DNA on the flowers that they interact with. We obtained eDNA from at least 135 arthropod species in 67 families and 14 orders, together representing diverse ecological groups including pollinators, parasitoids, gall inducers, predators, and phytophagous species. Arthropod communities clustered together according to plant species. Our data also indicate that this experiment was not exhaustive, and that an even higher arthropod richness could be obtained using this eDNA approach. Overall, our results demonstrate that it is possible to obtain information on diverse communities of insects and other terrestrial arthropods from eDNA metabarcoding of wild flowers. This novel source of eDNA represents a vast potential for addressing fundamental research questions in ecology, obtaining data on cryptic and unknown species of plant‐associated arthropods, as well as applied research on pest management or conservation of endangered species such as wild pollinators.  相似文献   

14.
张铁  于存  戚玉娇 《生态学报》2022,42(7):2774-2783
倒木是森林生态系统的重要组分,其分解调控着土壤的养分循环,同时也影响着土壤微生物群落结构。但目前鲜见关于倒木分解对土壤微生物群落影响方面的报道。选取贵州茂兰喀斯特常绿落叶阔叶混交林中处于轻、中和重度腐烂等级的狭叶润楠(Machilus rehderi)、枫香(Liquidambar formosana)、青冈栎(Cyclobalanopsis glauca)和圆果化香(Platycarya longipes)4种常见树种倒木为研究对象,以距倒木外围的3个不同水平距离(10cm、30cm和50cm)的土壤样品为实验材料,分析倒木树种、腐烂等级和距离对土壤真菌种类及多样性的影响。结果表明:1)喀斯特森林4种树种倒木所影响土壤真菌群落在门级分类上主要为子囊菌门、担子菌门和毛霉门,优势属有Mortierella spp.、Phlebia spp.、Pluteus spp.和Chaetomium spp.等;2)倒木的树种对土壤真菌群落相对丰度的影响有差异,圆果化香倒木下的土壤真菌丰富度Chao1指数显著高于青冈栎;3)随腐烂程度加深,4种树种倒木下的土壤真菌群落多样性呈显著增加趋势;4)土壤真菌群落丰度随着距倒木距离的增大(10-50cm)变化明显,如狭叶润楠影响的Pluteus spp.、Mortierella spp.和Ganoderma spp.,枫香的Chaetomium spp.,圆果化香的Mortierella spp.和青冈栎的Phlebia spp.和Oliveonia spp.等。本研究量化了喀斯特森林倒木所影响的土壤真菌群落组成及分布规律,在一定程度上为倒木分解与土壤微生物群落之间的作用机制的深入探索提供了科学依据。  相似文献   

15.
Arthropod Diversity and Conservation in Old-Growth Northwest Forests   总被引:2,自引:0,他引:2  
Old-growth forests of the Pacific Northwest extend along thecoastal region from southern Alaska to northern California andare composed largely of conifer rather than hardwood tree species.Many of these trees achieve great age (500–1,000 yr).Natural succession that follows forest stand destruction normallytakes over 100 years to reach the young mature forest stage.This succession may continue on into old-growth for centuries.The changing structural complexity of the forest over time,combined with the many different plant species that characterizesuccession, results in an array of arthropod habitats. It isestimated that 6,000 arthropod species may be found in suchforests—over 3,400 different species are known from asingle 6,400 ha site in Oregon. Our knowledge of these speciesis still rudimentary and much additional work is needed throughoutthis vast region. Many of these species play critical rolesin the dynamics of forest ecosystems. They are important innutrient cycling, as herbivores, as natural predators and parasitesof other arthropod species. This faunal diversity reflects thediversity of the environment and the arthropod complex providesa sensitive barometer of the conditions of the forest. Conservationefforts for forest arthropods are limited at present and controlledlargely by land-use policies. For example, an effort is beingmade to include arthropods in conservation efforts for the NorthernSpotted Owl and arthropods will be included in the Forest HealthMonitoring program now underway by the U.S. Forest Service.Evidence from other parts of the world suggest that arthropodsthat depend upon large pieces of dead wood may be particularlythreatened by forest management practices. Much remains to bedone in the conservation of forest arthropods.  相似文献   

16.
  • 1 The relationships between red wood ants (Formica rufa group) and other ground‐dwelling arthropods were studied in young managed forests stands in Eastern Finland. The main objectives were: (i) to test the influence of stand type (dominant tree species; age: sapling versus pole stage) and numbers of red wood ants on the occurrence of other ground‐dwelling arthropods and (ii) to study the occurrence of red wood ants versus other arthropods on a distance gradient from ant mounds. We used pitfall traps set in 5–14‐year‐old sapling stands and 30–45‐year‐old pole‐stage stands of Scots pine (Pinus sylvestris L.) and birch (Betula spp.) forests.
  • 2 Pitfall trap catches of red wood ants did not vary significantly between the forest stand types, although some groups of other arthropods showed clear responses to stand type (e.g. catches of other Formicinae and Gnaphosidae were higher in sapling stands than in pole‐stage stands). The number of red wood ants clearly explained less of the variation in assemblages of other ground‐dwelling arthropods than the forest stand type.
  • 3 Red wood ant numbers decreased significantly with distance from the mounds, but the other ground‐dwelling arthropods were insensitive to this gradient or even showed a preference for proximity to ant mounds and high ant activity.
  • 4 The results obtained in the present study suggest that wood ants do not have strong effects on several other ground‐dwelling arthropod groups in young managed forests other than in the immediate vicinity of their mounds.
  相似文献   

17.
Abstract:  Stag beetles are xylophagous insects that feed mainly on dead wood. They play an important role in the decomposition of dead wood in forest ecosystems. Most dead wood contains 1% nitrogen at most. It is suspected that stag beetles can utilize atmospheric nitrogen. We show that the larvae of Dorcus ( Macrodorcus ) rectus exposed to nitrogen reduce acetylene to ethylene in a time-dependent fashion. No reaction was detected with the dead wood or autoclaved larvae, suggesting that living larvae use the reaction for fixing nitrogen. Acetylene reduction to ethylene by larvae increased with incubation time. This effect was not seen using decayed wood only, autoclaved wood only or autoclaved larvae. Acetylene reduction by the larva proceeded at 1.25 ± 0.37 nmol acetylene/h/g (fresh wt), corresponding to the fixation of 0.25  μ g nitrogen per day per larva.  相似文献   

18.
19.
Fossil evidence for the evolutionary history of terrestrial arthropods in New Zealand is extremely limited; only six pre‐Quaternary insects (Triassic to Eocene) have been recorded previously, none of Miocene age. The Foulden Maar fossil lagerstätte in Otago has now yielded a diverse arthropod assemblage, including members of the Araneae, Plecoptera, Isoptera, Hemiptera, Coleoptera, Hymenoptera, Trichoptera and Diptera. The fauna significantly emends the fossil record for the Southern Hemisphere, provides an unparalleled insight into a 23‐million‐year‐old New Zealand lake/forest palaeoecosystem and allows a first evaluation of arthropod diversity at a time coeval with or shortly after the maximum marine transgression of Zealandia in the late Oligocene. The well‐preserved arthropods chiefly represent ground‐dwelling taxa of forest floor and leaf litter habitats, mostly from sub‐families and genera that are still present in the modern fauna. They provide precisely dated fossil evidence for the antiquity of some of New Zealand's terrestrial arthropods and the first potential time calibrations for phylogenetic studies. The high arthropod diversity at Foulden Maar, together with a subtropical rainforest flora and fossil evidence for complex arthropod–plant interactions, suggests that terrestrial arthropods persisted during the Oligocene marine transgression of Zealandia.  相似文献   

20.
Soil arthropod communities are highly diverse and critical for ecosystem functioning. However, our knowledge of spatial structure and the underlying processes of community assembly are scarce, hampered by limited empirical data on species diversity and turnover. We implement a high‐throughput sequencing approach to generate comparative data for thousands of arthropods at three hierarchical levels: genetic, species and supra‐specific lineages. A joint analysis of the spatial arrangement across these levels can reveal the predominant processes driving the variation in biological assemblages at the local scale. This multihierarchical approach was performed using haplotype‐level COI metabarcoding of entire communities of mites, springtails and beetles from three Iberian mountain regions. Tens of thousands of specimens were extracted from deep and superficial soil layers and produced comparative phylogeographic data for >1,000 codistributed species and nearly 3,000 haplotypes. Local assemblage composition differed greatly between grasslands and forests and, within each habitat, showed strong spatial structure and high endemicity. Distance decay was high at all levels, even at the scale of a few kilometres or less. The local distance decay patterns were self‐similar for the haplotypes and higher hierarchical entities, and this fractal structure was similar in all regions, suggesting that uniform processes of limited dispersal determine local‐scale community assembly. Our results from whole‐community metabarcoding provide insight into how dispersal limitations constrain mesofauna community structure within local spatial settings over evolutionary timescales. If generalized across wider areas, the high turnover and endemicity in the soil locally may indicate extremely high richness globally, challenging our current estimations of total arthropod diversity on Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号