首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

A new fossil species of the genus Scutus (Scutus mirus n. sp.) is described from five Late Oligocene to Early Miocene (Waitakian to Altonian; 25.2–15.9?Ma) localities in the South Island, New Zealand. It is one of the oldest fossil species of Scutus known and probably inhabited very shallow, sub-tropical waters surrounding Zealandia during this time. The holotype of Scutus petrafixus Finlay, 1930 is re-examined; it is possibly from All Day Bay, Kakanui (Waitakian 25.2–21.7?Ma). The New Zealand species documented herein significantly expand our understanding of the fossil record of this shallow-marine molluscan lineage, and by proxy, also indicate the presence of very shallow coastal marine environments around the late Oligocene and early Miocene in southern Zealandia.  相似文献   

2.
Aim The research aim is to reconstruct last glacial maximum (LGM) and Holocene vegetation history and ecology from fossil beetle assemblages. Location The LGM and Holocene sites are located in the Awatere Valley, which lies in the tectonically active Marlborough Region in the north east of the South Island of New Zealand. Methods Beetle fossils were extracted from silty organic sediment using the standard kerosene flotation method. Fossils were identified by comparisons made to modern species based on morphology and surface features. The ecology and distribution of modern analogues are extrapolated to reconstruct the fossil environment. Results One hundred and forty‐five beetle species belonging to 33 families were identified. The LGM fossil fauna showed the local vegetation was characterized by a forest patch surrounded by an open tussock/grassland landscape. This Nothofagus (southern beech) forest persisted at the site until mid‐Holocene when it was replaced by a podocarp forest that contained high beetle diversity. Herbivores dominate in the early stage of this zone, indicating a relatively new forest environment. Later in the Holocene, the fauna is dominated by detritivores indicating an older more established forest. The late Holocene is characterized by low diversity and the absence of forest species. This fauna indicates that by 500 years ago, the forest was absent and is associated with an almost compete loss of beetle biodiversity. Main conclusions The fossil beetles provide a unique perspective into the past environment in the Awatere Valley on a local scale. The reconstruction supports regional pollen interpretations of Holocene vegetation by identifying a specific forest patch. Fossil beetles are thus a valuable local proxy for vegetation reconstructions.  相似文献   

3.
Islands of the Pacific Ocean have long fascinated evolutionists. Oceanic islands, generally the products of volcanic activity, provide natural experiments as biological populations are well delimited and the age of islands can be determined using radiometric dating. 'Continental islands', including New Caledonia and New Zealand, provide equally valuable opportunities for evolutionary study. For students of New Zealand biogeography, the peculiar composition of the biota coupled with a limited interpretation of geology has resulted in the widespread acceptance that the flora and fauna is primarily ancient and of vicariant Gondwanan origin. There is increasing evidence from molecular data that much of this biodiversity is the product of evolution following relatively recent colonization. Such data have prompted biologists to consider geological information on New Zealand in more detail. At the heart of the issue is the question of whether modern New Zealand has a terrestrial link through time with the continent Zealandia that split from Gondwanaland some 80 Ma. Zealandia, which includes New Caledonia, Lord Howe Island and several of the subantarctic islands, is now largely submerged, and New Zealand's present terrestrial existence is the product of tectonic activity initiated around 26 Ma. We argue that for the purposes of biogeographical interpretation, New Zealand can be treated as an oceanic island.  相似文献   

4.
Fossil fern fronds referable to the extant fern genus Davallia (Polypodiales: Davalliaceae) bearing sporangia with in situ spores are described from the Early Miocene Foulden Maar diatomite deposit, Otago, New Zealand. The fronds are the first published Southern Hemisphere macrofossil record for the family and provide valuable palaeoclimate data supporting warm conditions in Early Miocene New Zealand. The matching of Davallia fronds to the form spore taxon Polypodiisporites radiatus shows that the genus has had a long, apparently continuous history throughout late Cenozoic New Zealand.  相似文献   

5.
Modern arthropod cuticles consist of chitin fibres in a protein matrix, but those of fossil arthropods with an organic exoskeleton, particularly older than Tertiary, contain a dominant aliphatic component. This apparent contradiction was examined by subjecting modern cockroach, scorpion and shrimp cuticle to artificial maturation (350 degrees C/700 bars/24 h) following various chemical treatments, and analysing the products with pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Analysis of artificially matured untreated cuticle yielded moieties related to phenols and alkylated substituents, pyridines, pyrroles and possibly indenes (derived from chitin). n-Alkyl amides, C16 and C18 fatty acids and alkane/alk-1-ene homologues ranging from C9 to C19 were also generated, the last indicating the presence of an n-alkyl component, similar in composition to that encountered in fossil arthropods. Similar pyrolysates were obtained from matured pure C16 and C18 fatty acids. Py-GC/MS of cuticles matured after lipid extraction and hydrolysis did not yield any aliphatic polymer. This provides direct experimental evidence that lipids incorporated from the cuticle were the source of aliphatic polymer. This process of in situ polymerization appears to account for most of the fossil record of terrestrial arthropods as well as marine arthropods that lacked a biomineralized exoskeleton.  相似文献   

6.
New Zealand biogeography has been dominated by the knowledge that its geophysical history is continental in nature. The continental crust (Zealandia) from which New Zealand is formed broke from Gondwanaland ca 80 Ma, and there has existed a pervading view that the native biota is primarily a product of this long isolation. However, molecular studies of terrestrial animals and plants in New Zealand indicate that many taxa arrived since isolation of the land, and that diversification in most groups is relatively recent. This is consistent with evidence for species turnover from the fossil record, taxonomic affinity, tectonic evidence and observations of biological composition and interactions. Extinction, colonization and speciation have yielded a biota in New Zealand which is, in most respects, more like that of an oceanic archipelago than a continent.  相似文献   

7.
Although the fossil record of biramous arthropods commences in the Lower Cambrian, unequivocal uniramous arthropods do not appear until the Upper Silurian, in association with terrestrial biotas. Here we report an Upper Cambrian marine arthropod from East Siberia that possesses some significant myriapodan features. The new arthropod,Xanthomyria spinosa n. gen., n. sp., closely resembles examples of archipolypodans from the Late Palaeozoic. If this resemblance genuinely represents myriapod affinities, this would be the first convincing myriapod from the Cambrian. Suggestions of an early branching point of the myriapods from other arthropods would be consistent with this. Conversely, an as yet poorly known clade of multi-segmented arthropods may exist in the Cambrian, with no close affinities to the myriapods.   相似文献   

8.
Some parasites modify the phenotype of their host in order to increase transmission to another host or to an environment suitable for reproduction. This phenomenon, known as host manipulation, is found across many parasite taxa. Freshwater hairworms are known for the behavioural changes they cause in their terrestrial arthropod hosts, increasing their likelihood of entering water to exit the host and reproduce. Understanding how infected arthropods move around in the natural environment could help uncover alterations in spatial distribution or movement induced by hairworms in their terrestrial definitive hosts. Moreover, few hairworm-host records exist for New Zealand, so any additional record could help elucidate their true host specificity. Here, we investigated whether infected terrestrial arthropods were more likely to approach streams in two subalpine communities of invertebrates, using a spatial grid of specialised pitfall traps. Although hairworm infection could not explain the movements of arthropod hosts near streams, we found several new host records for hairworms, including the first records for the recently described Gordionus maori. We also found some new host-parasite associations for mermithid nematodes. These records show that the host specificity of hairworms is quite low, suggesting that their diversity and distribution may be greater than what is currently known for New Zealand.  相似文献   

9.
A rich and diverse assemblage of arthropods and non‐biomineralized macroalgae occurs in the Upper Devonian marine deposits of the Holy Cross Mountains, central Poland. The phrase Kowala Lagerstätte is herein proposed for the fossil‐bearing deposits confined to the lower Famennian marly shale and limestone succession of the famous Kowala Quarry. The arthropod fauna is represented by phosphatic exoskeletal remains that still preserve the fine micro‐ornamentation of the cuticle. The fauna includes crustaceans and crustacean‐like taxa such as thylacocephalans, phyllocarids and angustidontids (in order of abundance). The non‐biomineralized algae, represented by at least three morphotypes, occur as carbonaceous compressions of their thalli while still preserving fine details including bundles of thin tubular projections. Although their general appearance is reminiscent of some Early Palaeozoic non‐calcified Dasycladales algae, their true taxonomic position is still uncertain. Lithology, as well as faunal and phytoplankton content point to a pelagic sedimentary environment. Impoverished benthic fauna, sediment lamination and geochemical signatures indicate at least periodic bottom‐water dysoxic to anoxic conditions. Thus, the preservation of arthropod cuticle and non‐calcified algae was primarily governed by oxygen‐deficient bottom waters that prevented bioturbation and scavenging during their burial.  相似文献   

10.
New Zealand has long been a conundrum to biogeographers, possessing as it does geophysical and biotic features characteristic of both an island and a continent. This schism is reflected in provocative debate among dispersalist, vicariance biogeographic and panbiogeographic schools. A strong history in biogeography has spawned many hypotheses, which have begun to be addressed by a flood of molecular analyses. The time is now ripe to synthesize these findings on a background of geological and ecological knowledge. It has become increasingly apparent that most of the biota of New Zealand has links with other southern lands (particularly Australia) that are much more recent than the breakup of Gondwana. A compilation of molecular phylogenetic analyses of ca 100 plant and animal groups reveals that only 10% of these are even plausibly of archaic origin dating to the vicariant splitting of Zealandia from Gondwana. Effects of lineage extinction and lack of good calibrations in many cases strongly suggest that the actual proportion is even lower, in keeping with extensive Oligocene inundation of Zealandia. A wide compilation of papers covering phylogeographic structuring of terrestrial, freshwater and marine species shows some patterns emerging. These include: east–west splits across the Southern Alps, east–west splits across North Island, north–south splits across South Island, star phylogenies of southern mountain isolates, spread from northern, central and southern areas of high endemism, and recent recolonization (postvolcanic and anthropogenic). Excepting the last of these, most of these patterns seem to date to late Pliocene, coinciding with the rapid uplift of the Southern Alps. The diversity of New Zealand geological processes (sinking, uplift, tilting, sea level change, erosion, volcanism, glaciation) has produced numerous patterns, making generalizations difficult. Many species maintain pre‐Pleistocene lineages, with phylogeographic structuring more similar to the Mediterranean region than northern Europe. This structure reflects the fact that glaciation was far from ubiquitous, despite the topography. Intriguingly, then, origins of the flora and fauna are island‐like, whereas phylogeographic structure often reflects continental geological processes.  相似文献   

11.
Abstract

Inventory of the invertebrate fauna is important to establish taxonomic diversity, abundance and distribution, and hence the conservation of indigenous biodiversity. Invertebrate assemblages have been documented in some broadleaf‐podocarp forests and grassland habitats in New Zealand, but not in dense stands of coastal forest or in mature podocarp forest. This survey aimed to provide a taxonomic inventory of terrestrial invertebrates and their habitat associations on Ulva Island (Rakiura National Park, Stewart Island), an off‐shore sanctuary of significant conservation value in New Zealand. We systematically documented the invertebrate assemblages collected in ground litter and on tree trunks on the island. The invertebrate specimens identified represented 4 phyla, 6 classes, 25 orders and 62 species. The invertebrate fauna reported in this survey was distinct from those of lowland shrubland and broadleaved‐Nothofagus forests on the mainland, but shared species with that reported from another similar off‐shore island, Codfish Island (Whenua Hou).  相似文献   

12.
《新西兰生态学杂志》2011,34(1):185-194
This paper explores distribution patterns exhibited by New Zealand?s freshwater fish fauna, both fossil and extant, and seeks to clarify processes that have generated these patterns. Knowledge of a Miocene New Zealand terrestrial/freshwater fossil fauna is based substantially on lacustrine deposits in Central Otago. It reflects an ecologically very different fauna from that known today. Nothing is known of the Miocene fluvial fauna. Present-day patterns of distribution and diversity reflect a deep ecological dichotomy. About half the fauna is diadromous, and the habit of these species, of moving to and from the sea, provides them with great resilience in the face of major known landscape perturbations resulting from orogeny and land submergence, glaciation and volcanism. The diadromous species tend to be widespread throughout New Zealand. In contrast, non-diadromous species are more strictly confined to freshwater habitats, and a major means of spread relates to changes in directions and connections of stream flows. As a result, species are much less resilient, they exhibit complex patterns of sympatry, and their ranges are much more localised. Despite all elements in the fauna living across the same landscape in space and time, distribution patterns of the varying species groups display great differences in pattern.  相似文献   

13.
New terrestrial and freshwater arthropods are described from the Windyfield cherts, a suite of silicified sinters deposited 700m north‐east of the Rhynie cherts and part of the same Early Devonian hot‐spring complex. The diverse assemblage consists of Heterocrania rhyniensis (Hirst and Maulik, 1926a), here recognized as a euthycarcinoid; scutigeromorph centipede material assigned to Crussolum sp.; the crustacean Lepidocaris; trigonotarbid arachnids; a new arthropod of myriapod affinities named Leverhulmia mariae gen. et sp. nov.; and the distinctively ornamented arthropod cuticle of Rhynimonstrum dunlopi gen. et sp. nov. The Leverhulmia animal preserves gut content identifying it as an early terrestrial detritivore. Abundant coprolites of similar composition and morphology to the gut contents of the euthycarcinoid crowd the matrix. Chert texture, faunal associations, and study of modern analogues strongly suggest that the terrestrial arthropods were ubiquitous Early Devonian forms with no particular special adaptation to localized conditions around the terrestrial hot‐spring vents. The aquatic arthropods represent biota from ephemeral cool‐water pools in the vicinity of the hot‐spring vents.  相似文献   

14.
Inference of feeding preferences in fossil terrestrial vertebrates (tetrapods) has been drawn predominantly from craniodental morphology, and less so from fossil specimens preserving conclusive evidence of diet in the form of oral and/or gut contents. Recently, the pivotal role of insectivory in tetrapod evolution was emphasized by the identification of putative insectivores as the closest relatives of the oldest known herbivorous amniotes. We provide the first compelling evidence for insectivory among early tetrapods on the basis of two 280-million-year-old (late Palaeozoic) fossil specimens of a new species of acleistorhinid parareptile with preserved arthropod cuticle on their toothed palates. Their dental morphology, consisting of homodont marginal dentition with cutting edges and slightly recurved tips, is consistent with an insectivorous diet. The intimate association of arthropod cuticle with the oral region of two small reptiles, from a rich fossil locality that has otherwise not produced invertebrate remains, strongly supports the inference of insectivory in the reptiles. These fossils lend additional support to the hypothesis that the origins and earliest stages of higher vertebrate evolution are associated with relatively small terrestrial insectivores.  相似文献   

15.
Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak canopies were fogged during rainy and dry season. A total of 614 identified arthropod morphospecies were recognized belonging to 22 orders associated with tree canopies. A separation of host tree species during both seasons, suggesting a different community structure on host plants species was demonstrated by the principal component analyses (PCA), therefore, differences between oak species results in phenotypes that structure the composition of the arthropod community. Q.laurina registered the highest densities, diversity index and number of rare species in comparison with Q.rugosa. While arthropod biomass showed an inverse pattern. Trees more close to one another (spatial distance) register a more similar canopy arthropod fauna. This study suggests that the trees of Q.laurina could act as a center of biodiversity by the accumulation of arthropod fauna with a considerable number of rare species, which presents wide ecological roles or is involved in critical processes that maintain forest ecosystems[Current Zoology 55(2):132-144,2009].  相似文献   

16.
Abstract: As top predators, birds may have significant effects on arthropod abundances and affect the trophic structure of arthropod communities through predation of lower order predators (e.g. spiders) and by competition for prey. We investigated the effects of bird predation on canopy arthropods in south‐western Australia by using plastic bird mesh to exclude insectivorous birds from the foliage of wandoo Eucalyptus wandoo saplings. Exclosure resulted in an increase in the number of herbivorous and predatory arthropods. Total arthropods (with and without ants), spiders, adult Coleoptera, and larval Lepidoptera were significantly more abundant on meshed than unmeshed saplings. All size‐classes of arthropods, taxa grouped, were more abundant on meshed than unmeshed saplings, but with no evidence of a disproportionate increase of the largest arthropods on meshed saplings. All size‐classes of spiders increased in abundance on saplings from which birds were excluded. There were significant differences in the total abundance of arthropods (with and without ants), spiders (Araneae), sucking bugs (Homoptera), adult beetles (Coleoptera), larval moths (Lepidoptera), and wasps and ants (Hymenoptera) for both unmeshed and meshed saplings between sample periods. These seasonal patterns of abundance and differences between sample periods appeared to be determined by seasonal weather patterns, with the lowest numbers associated with drier and hotter conditions in summer and autumn than in winter and spring. The conclusion reached is that eucalypt forest birds have limited effects on temporal variation in canopy arthropod abundances, but depress abundances, and affect the size and trophic composition of the fauna. Given the cascading effects of birds as predators on arthropods, successful conservation management of eucalypt ecosystems, including plantations and revegetation, should be planned to maximize bird numbers and diversity.  相似文献   

17.
Carbon and oxygen stable isotopes within modern and fossil tooth enamel record the aspects of an animal''s diet and habitat use. This investigation reports the first isotopic analyses of enamel from a large chimpanzee community and associated fauna, thus providing a means of comparing fossil ape and early hominin palaeoecologies with those of a modern ape. Within Kibale National Park forest, oxygen isotopes differentiate primate niches, allowing for the first isotopic reconstructions of degree of frugivory versus folivory as well as use of arboreal versus terrestrial resources. In a comparison of modern and fossil community isotopic profiles, results indicate that Sivapithecus, a Miocene ape from Pakistan, fed in the forest canopy, as do chimpanzees, but inhabited a forest with less continuous canopy or fed more on leaves. Ardipithecus, an early hominin from Ethiopia, fed both arboreally and terrestrially in a more open habitat than inhabited by chimpanzees.  相似文献   

18.
We evaluated the effects of a single application of granular carbaryl made against nymphal Ixodes scapularis Say on the diversity and abundance of forest arthropods taken in pitfall traps in oak and mixed oak-pine forest sites for 12 wk after treatment in central New Jersey. Significant short-term changes in arthropod assemblages were detected immediately posttreatment. Effects were not distributed equally across taxa. Seasonal changes in numbers and diversity of forest arthropods in the study areas may have affected the impact of the acaricide in the treatment area. Comparison with control areas indicated that reductions in abundance of some arthropod taxa in the treatment area were detectable 12 wk after treatment.  相似文献   

19.
The Pantanal is one of the faunistic provinces considered as a priority area for invertebrate conservation. However, it is one of the areas in Brazil where the local fauna is less assessed, thus needing more scientific information that could allow political decisions to be made regarding conservation. The continuous pressure for new pasture areas leads to improper habitat occupation and destruction, like fragmentation of forest areas in the region. Such alterations can cause different impacts on the local fauna, including the soil arthropods. The main objective of this work was to compare the morphospecies composition, diversity and density of the soil arthropod fauna between a secondary single species forest (Cambarazal) and a cultivated pasture with exotic and native grass species, using only pitfall traps as sampling method. We found a great variation on the vegetal cover among environments. A higher humidity in the forest soil was observed, as well as a greater compaction of the soil in the cultivated pasture. A total of 3635 individuals were collected, belonging to 214 different morphospecies. 139 morphospecies were collected in the forest (37% exclusive to this environment), while 134 morphospecies were collected in the cultivated pasture (35% exclusive). The diversity was higher in the forest (H′ = 1.634) than in the cultivated pasture (H′ = 1.253). However, considering the area as a whole (forest and pasture) the global diversity was increased. In this paper we discuss about the effects of environmental changes on soil arthropod diversity and propose a hypothetical model for invertebrate management in mosaic ecosystems.  相似文献   

20.
Orthoglymma Liebherr, Marris, Emberson, Syrett & Roig‐Juñent gen.n. (Coleoptera: Carabidae: Broscini) is described to accommodate the single type species Orthoglymma wangapeka Liebherr, Marris, Emberson, Syrett & Roig‐Juñent sp.n., known from the Wangapeka Track, Kahurangi National Park, north‐western South Island, New Zealand. Orthoglymma wangapeka sp.n. is analysed cladistically along with a comprehensive array of 42 other broscine generic terminals and four out‐group taxa, using information obtained from 73 morphological characters, and placed as adelphotaxon to the remainder of subtribe Nothobroscina, a clade distributed in New Zealand, southern South America and Australia. Based on fossil evidence for Carabidae, the occurrence of Orthoglymma wangapeka sp.n. on the Buller Terrane, a geological feature once situated on the eastern margin of Gondwana, and early cladistic divergence of Orthoglymma from the remaining Nothobroscina, Orthoglymma wangapeka sp.n. is interpreted as a Gondwanan relict. The New Zealand arthropod fauna is reviewed to identify other taxa in existence at the time of Cretaceous vicariance of New Zealand and Australia. These candidate Gondwanan taxa, all of which are specified using fossil data or molecular divergence‐based estimates, are analysed biogeographically. Where phylogenetic hypotheses are available, primordial distributions are optimized using event‐based, dispersal‐vicariance (DIVA) analysis. The hypothesized Gondwanan‐aged taxa demonstrate inordinate fidelity to the Gondwanan‐aged geological terranes that constitute the western portions of New Zealand, especially in the South Island. Persistence of these relicts through a hypothesized ‘Oligocene drowning’ event is the most parsimonious explanation for the concentration of Gondwanan relicts in the Nelson, Buller and Fiordland districts of the South Island. Geographic patterns of Gondwanan‐aged taxa are compared with distributions of taxa hypothesized to have colonized New Zealand across the Tasman Sea from Australia and New Caledonia, subsequent to Cretaceous vicariance. These post‐Gondwanan taxa exhibit very different patterns of distribution and diversification in New Zealand, including: (i) abundant endemism in Northland, and the islands and peninsulas of the North Island; (ii) species geographically restricted to areas underlain by the youngest Rakaia and Pahau geological terranes; and (iii) species exhibiting exceedingly widespread geographic distributions spanning geological terranes of disparate ages.
相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号