首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long non‐coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non‐coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre‐miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl‐lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain‐ and loss‐of‐function experiments and RNA ligase‐mediated 5′‐amplification of cDNA ends (RLM‐5′ RACE) also revealed that Sl‐miR482a was negatively involved in tomato resistance by targeting SlNBS‐LRR genes and that silencing of SlNBS‐LRR1 decreased tomato resistance. Sl‐lncRNA15492 inhibited the expression of mature Sl‐miR482a, whose precursor was located within the antisense sequence of Sl‐lncRNA15492. Further degradome analysis and additional RLM‐5′ RACE experiments verified that mature Sl‐miR482a could also cleave Sl‐lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl‐lncRNA15492 and Sl‐miR482a mutually inhibit the maintenance of Sl‐NBS‐LRR1 homeostasis during tomato resistance to P. infestans.  相似文献   

2.
Long non‐coding RNAs (lncRNAs) are involved in various pathophysiologic processes and human diseases. However, their dynamics and corresponding functions in pulmonary fibrosis remain poorly understood. In this study, portions of lncRNAs adjacent or homologous to protein‐coding genes were determined by searching the UCSC genome bioinformatics database. This was found to be potentially useful for exploring lncRNA functions in disease progression. Previous studies showed that competing endogenous RNA (ceRNA) hypothesis is another method to predict lncRNA function. However, little is known about the function of ceRNA in pulmonary fibrosis. In this study, we selected two differentially expressed lncRNAs MRAK088388 and MRAK081523 to explore their regulatory mechanisms. MRAK088388 and MRAK081523 were analysed as long‐intergenic non‐coding RNAs (lincRNAs), and identified as orthologues of mouse lncRNAs AK088388 and AK081523, respectively. qRT‐PCR and in situ hybridization (ISH) showed that they were significantly up‐regulated, and located in the cytoplasm of interstitial lung cells. We also showed that MRAK088388 and N4bp2 had the same miRNA response elements (MREs) for miR‐200, miR‐429, miR‐29, and miR‐30, whereas MRAK081523 and Plxna4 had the same MREs for miR‐218, miR‐141, miR‐98, and let‐7. Moreover, the expression levels of N4bp2 and Plxna4 significantly increased in fibrotic rats, and were highly correlated with those of MRAK088388 and MRAK081523, respectively. Among their shared miRNAs, miR‐29b‐3p and let‐7i‐5p decreased in the model group, and were negatively correlated with the expression of MRAK088388 and MRAK081523, respectively. MRAK088388 and MRAK081523 could regulate N4bp2 and Plxna4 expression by sponging miR‐29b‐3p and let‐7i‐5p, respectively, and possessed regulatory functions as ceRNAs. Thus, our study may provide insights into the functional interactions of lncRNA, miRNA and mRNA, and lead to new theories for the pathogenesis and treatment of pulmonary fibrosis.  相似文献   

3.
Human osteoclasts are differentiated from CD14+ monocytes and are responsible for bone resorption. Long non‐coding RNAs (lncRNAs) have been proved to be significantly involved in multiple biologic processes, especially in cell differentiation. However, the effect of lncRNAs in osteoclast differentiation is less appreciated. In our study, RNA sequencing (RNA‐seq) was used to identify the expression profiles of lncRNAs and mRNAs in osteoclast differentiation. The results demonstrated that expressions of 1117 lncRNAs and 296 mRNAs were significantly altered after osteoclast differentiation. qRT‐PCR assays were performed to confirm the expression profiles, and the results were almost consistent with the RNA‐seq data. GO and KEGG analyses were used to predict the functions of these differentially expressed mRNA and lncRNAs. The Path‐net analysis demonstrated that MAPK pathway, PI3K‐AKT pathway and NF‐kappa B pathway played important roles in osteoclast differentiation. Co‐expression networks and competing endogenous RNA networks indicated that ENSG00000257764.2‐miR‐106a‐5p‐TIMP2 may play a central role in osteoclast differentiation. Our study provides a foundation to further understand the role and underlying mechanism of lncRNAs in osteoclast differentiation, in which many of them could be potential targets for bone metabolic disease.  相似文献   

4.
5.
Melanoma is the most lethal cutaneous cancer with a highly aggressive and metastatic phenotype. While recent genetic and epigenetic studies have shed new insights into the mechanism of melanoma development, the involvement of regulatory non‐coding RNAs remain unclear. Long non‐coding RNAs (lncRNAs) are a group of endogenous non‐protein‐coding RNAs with the capacity to regulate gene expression at multiple levels. Recent evidences have shown that lncRNAs can regulate many cellular processes, such as cell proliferation, differentiation, migration and invasion. In the melanoma, deregulation of a number of lncRNAs, such as HOTAIR, MALAT1, BANCR, ANRIL, SPRY‐IT1 and SAMMSON, have been reported. Our review summarizes the functional role of lncRNAs in melanoma and their potential clinical application for diagnosis, prognostication and treatment.  相似文献   

6.
7.
Colorectal cancer (CRC) is the third most common malignance. Although great efforts have been made to understand the pathogenesis of CRC, the underlying mechanisms are still unclear. It is now clear that more than 90% of the total genome is actively transcribed, but lack of protein‐coding potential. The massive amount of RNA can be classified as housekeeping RNAs (such as ribosomal RNAs, transfer RNAs) and regulatory RNAs (such as microRNAs [miRNAs], PIWI‐interacting RNA [piRNAs], tRNA‐derived stress‐induced RNA, tRNA‐derived small RNA [tRFs] and long non‐coding RNAs [lncRNAs]). Small non‐coding RNAs are a group of ncRNAs with the length no more than 200 nt and they have been found to exert important regulatory functions under many pathological conditions. In this review, we summarize the biogenesis and functions of regulatory sncRNAs, such as miRNAs, piRNA and tRFs, and highlight their involvements in cancers, particularly in CRC.  相似文献   

8.
9.
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate translation of mRNA into protein and play a crucial role for almost all biological activities. However, the identification of miRNAs from mesenchymal stem cells (MSCs), especially from dental pulp, is poorly understood. In this study, dental pulp stem cells (DPSCs) were characterized in terms of their proliferation and differentiation capacity. Furthermore, 104 known mature miRNAs were profiled by using real‐time PCR. Notably, we observed 19 up‐regulated miRNAs and 29 significantly down‐regulated miRNAs in DPSCs in comparison with bone marrow MSCs (BM‐MSCs). The 19 up‐regulated miRNAs were subjected to ingenuity analysis, which were composed into 25 functional networks. We have chosen top 2 functional networks, which comprised 10 miRNA (hsa‐miR‐516a‐3p, hsa‐miR‐125b‐1‐3p, hsa‐miR‐221‐5p, hsa‐miR‐7, hsa‐miR‐584‐5p, hsa‐miR‐190a, hsa‐miR‐106a‐5p, hsa‐mir‐376a‐5p, hsa‐mir‐377‐5p and hsa‐let‐7f‐2‐3p). Prediction of target mRNAs and associated biological pathways regulated by each of this miRNA was carried out. We paid special attention to hsa‐miR‐516a‐3p and hsa‐miR‐7‐5p as these miRNAs were highly expressed upon validation with qRT‐PCR analysis. We further proceeded with loss‐of‐function analysis with these miRNAs and we observed that hsa‐miR‐516a‐3p knockdown induced a significant increase in the expression of WNT5A. Likewise, the knockdown of hsa‐miR‐7‐5p increased the expression of EGFR. Nevertheless, further validation revealed the role of WNT5A as an indirect target of hsa‐miR‐516a‐3p. These results provide new insights into the dynamic role of miRNA expression in DPSCs. In conclusion, using miRNA signatures in human as a prediction tool will enable us to elucidate the biological processes occurring in DPSCs.  相似文献   

10.
Colorectal cancer (CRC) is one of the leading causes of cancer‐associated death globally. Long non‐coding RNAs (lncRNAs) have been identified as micro RNA (miRNA) sponges in a competing endogenous RNA (ceRNA) network and are involved in the regulation of mRNA expression. This study aims to construct a lncRNA‐associated ceRNA network and investigate the prognostic biomarkers in CRC. A total of 38 differentially expressed (DE) lncRNAs, 23 DEmiRNAs and 27 DEmRNAs were identified by analysing the expression profiles of CRC obtained from The Cancer Genome Atlas (TCGA). These RNAs were chosen to develop a ceRNA regulatory network of CRC, which comprised 125 edges. Survival analysis showed that four lncRNAs, six miRNAs and five mRNAs were significantly associated with overall survival. A potential regulatory axis of ADAMTS9‐AS2/miR‐32/PHLPP2 was identified from the network. Experimental validation was performed using clinical samples by quantitative real‐time PCR (qRT‐PCR), which showed that expression of the genes in the axis was associated with clinicopathological features and the correlation among them perfectly conformed to the ‘ceRNA theory’. Overexpression of ADAMTS9‐AS2 in colon cancer cell lines significantly inhibited the miR‐32 expression and promoted PHLPP2 expression, while ADAMTS9‐AS2 knockdown had the opposite effects. The constructed novel ceRNA network may provide a comprehensive understanding of the mechanisms of CRC carcinogenesis. The ADAMTS9‐AS2/miR‐32/PHLPP2 regulatory axis may serve as a potential therapeutic target for CRC.  相似文献   

11.
Long non‐coding RNAs (lncRNAs), which competitively bind miRNAs to regulate target mRNA expression in the competing endogenous RNAs (ceRNAs) network, have attracted increasing attention in breast cancer research. We aim to find more effective therapeutic targets and prognostic markers for breast cancer. LncRNA, mRNA and miRNA expression profiles of breast cancer were downloaded from TCGA database. We screened the top 5000 lncRNAs, top 5000 mRNAs and all miRNAs to perform weighted gene co‐expression network analysis. The correlation between modules and clinical information of breast cancer was identified by Pearson's correlation coefficient. Based on the most relevant modules, we constructed a ceRNA network of breast cancer. Additionally, the standard Kaplan‐Meier univariate curve analysis was adopted to identify the prognosis of lncRNAs. Ultimately, a total of 23 and 5 modules were generated in the lncRNAs/mRNAs and miRNAs co‐expression network, respectively. According to the Green module of lncRNAs/mRNAs and Blue module of miRNAs, our constructed ceRNA network consisted of 52 lncRNAs, 17miRNAs and 79 mRNAs. Through survival analysis, 5 lncRNAs (AL117190.1, COL4A2‐AS1, LINC00184, MEG3 and MIR22HG) were identified as crucial prognostic factors for patients with breast cancer. Taken together, we have identified five novel lncRNAs related to prognosis of breast cancer. Our study has contributed to the deeper understanding of the molecular mechanism of breast cancer and provided novel insights into the use of breast cancer drugs and prognosis.  相似文献   

12.
13.
Long non‐coding RNAs (lncRNAs) have emerged as new and important regulators of pathological processes including tumour development. In this study, we demonstrated that differentiation antagonizing non‐protein coding RNA (DANCR) was up‐regulated in lung adenocarcinoma (ADC) and that the knockdown of DANCR inhibited tumour cell proliferation, migration and invasion and restored cell apoptosis rescued; cotransfection with a miR‐496 inhibitor reversed these effects. Luciferase reporter assays showed that miR‐496 directly modulated DANCR; additionally, we used RNA‐binding protein immunoprecipitation (RIP) and RNA pull‐down assays to further confirm that the suppression of DANCR by miR‐496 was RISC‐dependent. Our study also indicated that mTOR was a target of miR‐496 and that DANCR could modulate the expression levels of mTOR by working as a competing endogenous RNA (ceRNA). Furthermore, the knockdown of DANCR reduced tumour volumes in vivo compared with those of the control group. In conclusion, this study showed that DANCR might be an oncogenic lncRNA that regulates mTOR expression through directly binding to miR‐496. DANCR may be regarded as a biomarker or therapeutic target for ADC.  相似文献   

14.
A growing number of long non‐coding RNAs (lncRNAs) have been found to be involved in diverse biological processes such as cell cycle regulation, embryonic development, and cell differentiation. However, limited knowledge is available concerning the underlying mechanisms of lncRNA functions. In this study, we found down‐regulation of TCONS_00041960 during adipogenic and osteogenic differentiation of glucocorticoid‐treated bone marrow mesenchymal stem cells (BMSCs). Furthermore, up‐regulation of TCONS_00041960 promoted expression of osteogenic genes Runx2, osterix, and osteocalcin, and anti‐adipogenic gene glucocorticoid‐induced leucine zipper (GILZ). Conversely, expression of adipocyte‐specific markers was decreased in the presence of over‐expressed TCONS_00041960. Mechanistically, we determined that TCONS_00041960 as a competing endogenous RNA interacted with miR‐204‐5p and miR‐125a‐3p to regulate Runx2 and GILZ, respectively. Overall, we identified a new TCONS_00041960‐miR‐204‐5p/miR‐125a‐3p‐Runx2/GILZ axis involved in regulation of adipogenic and osteogenic differentiation of glucocorticoid‐treated BMSCs.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号